• Title/Summary/Keyword: Average bit error rate

Search Result 205, Processing Time 0.028 seconds

Precoded OFDMA with Superimposed Pilots

  • Kim, Sung-Hwan;Jung, Sung-Yoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1059-1066
    • /
    • 2009
  • In this paper, we propose the precoder with superimposed pilots for orthogonal frequency-division multiple access (OFDMA) systems in order to enhance the transmission efficiency of the system and reduce peak-to-average power ratio (PAPR) which is the problem in OFDMA uplink. In wireless communication systems, the way to improve transmission efficiency is 1) to reduce bit error rate (BER) or 2) to increase data rate. In the proposed scheme, we design the precoder and superimposed pilots in the transmitter and use them in the receiver for increasing data rate, caused by the saved transmission bandwidth thanks to the superimposed pilots. In addition, we improve BER performance with the help of the frequency diversity gain caused by precoding. Also using superimposed pilots, we enhance the PAPR performance by increasing the average output power of the signal.

Performance Analysis of Distributed Antenna Systems with Antenna Selection over MIMO Rayleigh Fading Channel

  • Yu, Xiangbin;Tan, Wenting;Wang, Ying;Liu, Xiaoshuai;Rui, Yun;Chen, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3016-3033
    • /
    • 2014
  • The downlink performance of distributed antenna systems (DAS) with antennas selection is investigated in Rayleigh fading multicell environment, and the corresponding system capacity and bit error rate (BER) analysis are presented. Based on the moment generating function, the probability density function (PDF) and cumulative distribution function (CDF) of the effective signal to interference plus noise ratio (SINR) of the system are first derived, respectively. Then, with the available CDF and PDF, the accurate closed-form expressions of average channel capacity and average BER are further derived for exact performance evaluation. To simplify the expression, a simple closed-form approximate expression of average channel capacity is obtained by means of Taylor series expansion, with the performance results close to the accurate expression. Besides, the system outage capacity is analyzed, and an accurate closed-form expression of outage capacity probability is derived. These theoretical expressions can provide good performance evaluation for DAS downlink. It can be shown by simulation that the theoretical analysis and simulation are consistent, and DAS with antenna selection outperforms that with conventional blanket transmission. Moreover, the system performance can be effectively improved as the number of receive antennas increases.

Approximate Minimum BER Power Allocation of MIMO Spatial Multiplexing Relay Systems (다중 안테나 공간 다중화 릴레이 시스템을 위한 근사 최소 비트 오율 전력 할당 방법)

  • Hwang, Kyu-Ho;Choi, Soo-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.337-344
    • /
    • 2011
  • In this paper, a multiple-input and multiple-output (MIMO) spatial multiplexing (SM) relay system is studied in a bit error rate (BER) sense, where every node is deployed with multiple antennas. In order to efficiently use the limited power resource, it is essential to optimally allocate the power to nodes and antennas. In this context, the power allocation (PA) algorithm based on minimum BER (MBER) for a MIMO SM relay system is proposed, which is derived by direct minimization of the average BER, and divided into inter-node and inter-antenna PA algorithm. The proposed scheme outperforms the conventional equal power allocation (EPA) algorithm without extra power consumption.

BER Derivation of M-PSK ModulationTechnique for Single and Multiple Racian Fading Channel (단일 및 다중 라이시안 페이딩 채널에서 M-PSK 변조기술에서의 BER 유도)

  • Alam, S.M. Shamsul;Choi, Goang-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.4
    • /
    • pp.34-40
    • /
    • 2012
  • In wireless communication system, fading is an unavoidable problem. Hence, errors in form of BER are introduced with the transmitted signal. It is necessary to recognize the behavior of these errors in different fading channels. To obtain the mathematical solution for the average bit error rate(BER) of coherent MPSK, some techniques are presented. In this paper, the impact of diversity is also analyzed over slow and flat Rician fading channel. In here, the value of modulation index, M is varied and the effects of its variation are also depicted. So, these performance curves with different diversity values and fading parameter are useful to design and evaluate the radio channel for faithful communication system.

Underwater Optical Image Data Transmission in the Presence of Turbulence and Attenuation

  • Ramavath Prasad Naik;Maaz Salman;Wan-Young Chung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Underwater images carry information that is useful in the fields of aquaculture, underwater military security, navigation, transportation, and so on. In this research, we transmitted an underwater image through various underwater mediums in the presence of underwater turbulence and beam attenuation effects using a high-speed visible optical carrier signal. The optical beam undergoes scintillation because of the turbulence and attenuation effects; therefore, distorted images were observed at the receiver end. To understand the behavior of the communication media, we obtained the bit error rate (BER) performance of the system with respect to the average signal-to-noise ratio (SNR). Also, the structural similarity index (SSI) and peak SNR (PSNR) metrics of the received image were evaluated. Based on the received images, we employed suitable nonlinear filters to recover the distorted images and enhance them further. The BER, SSI, and PSNR metrics of the specific nonlinear filters were also evaluated and compared with the unfiltered metrics. These metrics were evaluated using the on-off keying and binary phase-shift keying modulation techniques for the 50-m and 100-m links for beam attenuation resulting from pure seawater, clear ocean water, and coastal ocean water mediums.

BER Performance of OFDM Combined with TDM Using Frequency-Domain Equalization

  • Gacanin, Haris;Takaoka, Shinsuke;Adachi, Fumiyuki
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.34-42
    • /
    • 2007
  • Orthogonal frequency division multiplexing (OFDM) combined with time division multiplexing (TDM), in this paper called OFDM/TDM, can overcome the high peak-to-average-power ratio (PAPR) problem of the conventional OFDM and improve the robustness against long time delays. In this paper, the bit error rate (BER) performance of OFDM/FDM in a frequency-selective Rayleigh fading. channel is evaluated by computer simulation. It is shown that the use of frequency-domain equalization based on minimum mean square error criterion (MMSE-FDE) can significantly improve the BER performance, compared to the conventional OFDM, by exploiting the channel frequency-selectivity while reducing the PAPR or improving the robustness against long time delays. It is also shown that the performance of OFDM/FDM designed to reduce the PAPR can bridge the conventional OFDM and single-carrier (SC) transmission by changing the design parameter.

Performance and Operating Characteristics Analysis of the 16-APSK Modulation over Nonlinear Channels (16-APSK 변조 방식의 성능 및 비선형 채널에서의 동작 특성 분석)

  • Kang, Seok-Heon;Kim, Sang-Tae;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.362-369
    • /
    • 2007
  • APSK (Amplitude Phase Shift Keying) digital modulation is characterized by the circular positioning of the transmission symbols in the constellation diagram. Due to such structural characteristics, the peak-to-average power ratio of the APSK modulation is lower than that of the QAM (Quadrature Amplitude Modulation), and the amount of performance degradation over nonlinear channels can be mitigated. The APSK modulation scheme has recently been adopted as satellite communication system standards including the DVB-S2 (Digital Video Broadcasting - Satellite, Version 2). In this paper, a BER (Bit Error Rate) upper bound approximation formula is derived using the channel model with the output power saturation characteristics, and its accuracy is demonstrated. Using the derived formula, the input power level that minimizes the BER is determined. The optimized performance based on the radii ratio of the 16APSK constellation and the channel saturation level is also presented.

A Study on the Efficient Concatenated Code on the Diffusion-based Molecular Communication Channel (확산기반 분자통신 채널에 효율적인 직렬 연결 부호에 관한 연구)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.230-236
    • /
    • 2022
  • In this paper, we propose an efficient concatenated code for both random and ISI errors on diffusion-based molecular communication channels. The proposed concatenated code was constructed by combining the ISI-mitigating code designed for ISI mitigation and the ISI-Hamming code strong against random errors, and the BER(bit error rate) performance was analyzed through simulation. In the case of the above M=1,200 channel environment, it was found that the error rate performance of the concatenated code follows the error rate performance of the ISI-mitigating code, which is strong against ISI, and follows the error rate performance of the ISI-Hamming code, which is strong against random errors, in the channel environment below M=600. In M=600~1,200, the concatenated code shows the best error rate performance among those of three codes, which is analyzed because it can correct both random errors and errors caused by ISI. In the following cases of below M=800, it can be seen that the error rate of the concatenated code and the ISI-mitigating code shows an error rate difference of about 1.0×10-1 on average.

Noncoherent Detection of Orthogonal Modulation Combined with Alamouti Space-Time Coding

  • Simon, Marvin K.;Wang, Ji-Bing
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.124-134
    • /
    • 2003
  • In this paper, we investigate the error probability performance of noncoherently detected orthogonal modulation combined with Alamouti space-time block coding. We find that there are two types of pair-wise error probabilities that characterize the performance. We employ methods that allow a direct evaluation of exact, closed-form expressions for these error probabilities. Theoretical as well as numerical results show that noncoherent orthogonal modulation combined with space-time block coding (STBC) achieves full spatial diversity. We derive an expression for approximate average bit error probability for-ary orthogonal signaling that allows one to show the tradeoff between increased rate and performance degradation.

Design of Tone-Controlled CI/OFDM Communication System and Improvement of BER Performance by IMD Reduction (톤 제어 방식의 CI/OFDM 통신 시스템 설계와 IMD 저감을 이용한 BER 성능 향상)

  • Kim, Seon-Ae;Lee, Il-Jin;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.363-371
    • /
    • 2009
  • OFDM(orthogonal frequency division multiplexing) is very effective forhigh data rate transmission system. However, communication performance becomes worse because of nonlinear distortion resulting from the PAPR. In this paper, we like to propose a tone-controlled CI/OFDM system including the TMD (inter-modulation distortion) reduction method in order to improve the BER performance. In this tone-controlled CI/OFDM system, control tone is additionally inserted in each data symbol of CI/OFDM system to make the CI/OFDM lower the PAPR and robust to nonlinear distortion. So, tone-controlled CI/OFDM using the IMD reduction method shows better BER (bit error rate) performance than methods based on PAPR reduction.