• Title/Summary/Keyword: Average Intensity

Search Result 1,173, Processing Time 0.028 seconds

Characterization of Sheet Formation by Image Analysis (화상분석 시스템을 이용한 지필도 평가)

  • 원종명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.4
    • /
    • pp.30-40
    • /
    • 1999
  • The possibility of the characterization of sheet formation by image analysis with transmitted light was evaluated. Specific perimenter, average perimeter and variation could not be used to predict the sheet formation because there were no corrleation. Although image analysis method still have a lot of problems , it was found that the contrast intensity obtained by image analysis with transmitted light can be used to predict the sheet formation. In the case of highly filled sheet, the intensity of transmitted light was too low to characterize the sheet formation . However, it was possible to characterize the formation of unfilled heavy weight paper($\leq$200g/㎡).

  • PDF

Observations on Normal Body Temperatures in Differently Climate Conditions

  • Nguyen, My-Hang;Hiromi Tokura
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.406-408
    • /
    • 2002
  • In order to know the characteristics of circadian rhythms in core temperature in tropical inhabitants, we measured rectal temperatures every 10 min for 24 hrs in 6 Vietnamese, 20 - 22 yrs (5 males and I females) under natural conditions. Average light intensity was 16000 lx. Ambient temperatures ranged from 33 to 36 oC. These data obtained were compared with those in Japanese setters and the Polish inhabitants. The participants were sitting mostly during wakefulness and lying in bed during sleep. The results obtained are summarized as follows: I) The average maximum value was 37.7 oC, which was significantly higher than in the Japanese and Polish as well. 2) The average minimum value was 36.4 oC, which was also lower. 3) A range of oscillation was 1.3 oC, which was clearly greater than in the people living in the temperate areas. The higher maximum value of core temperature, which was actively regulated under warm temperature, seemed of adaptive significance in order to reduce water consumption. A greater rage of oscillation in tropical Vietnamese people might have ecological significance for efficient acclimatization in the environment with strong light intensity and high ambient temperature, suggesting that the setpoint of core temperature could show a greater range of oscillation.

  • PDF

Analysis for Strength Estimation of Adhesive Joints (접착이음의 강도평가에 대한 해석)

  • 박성완;이장규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.98-107
    • /
    • 2004
  • The objectives of this research are to establish the criteria of peel occurrence considering the shape of bond terminus and to compare the strength properties of some adhesive joints. The criteria of feel occurrence at the bond terminus was suggested. Peel loads of some adhesive joint(butt joint, T -shape specimen, single lap joint) were determined from tensile tests. Principal stress distributions of these joints were determined from finite element method analysis. Then, peel occurrence was estimated with intensity of stress singularity ' $K_{prin.}$' when the terminus shape was square, with average principal stress when the terminus shape was rounded. The conclusions are summarized as follows; (1) In the non-filleted model(e.g., butt joint, T-shape specimen), principal stress shows singularity at the bond terminus, intensity of stress(principal stress) singularity ' $K_{prin.}$&apso; can use as the criteria of peel occurrence at the bond terminus. (2) In the filleted model(e.g., single lap joint), principal stress doesn't show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.'t show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.

  • PDF

Texture and Plastic Strain Ratio Changes of Hot Asymmetrically Rolled AA1050 Al Sheet (열간 비대칭 압연한 AA1050 Al 판재의 집합조직과 소성변형비 변화)

  • Hamrakulov, B.;Lee, C.W.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.287-293
    • /
    • 2019
  • The plastic strain ratio is one of the factors of the deep drawability of metal sheets. The plastic strain ratio of Al sheet is low value. Therefore, it is necessary to increase the plastic strain ratio in order to improve the deep drawability of the Al sheet. This study investigated the increase in the plastic strain ratio and the texture change of AA1050 Al sheet after the hot asymmetric rolling. The average plastic strain ratio of initial AA1050 Al sheets was 0.41. After 84% hot asymmetric rolling at $400^{\circ}C$, the average plastic strain ratio was 0.77. The average plastic strain ratio of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1.9 times higher than that of initial AA1050 Al sheet. The ${\mid}{\Delta}R{\mid}$ of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1/2 times lower than that of initial AA1050 Al sheet. This result is due to the development of the intensity of the ${\gamma}-fiber$ texture and the decrease of the intensity of {001}<100> texture after the hot asymmetric rolling of AA1050 Al sheet.

Texture and Plastic Strain Ratio Changes of Hot Asymmetrically Rolled AA3003 Sheet (열간 비대칭 압연한 AA3003 판재의 집합조직과 소성변형비 변화)

  • Hamrakulov, B.;Lee, C.W.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.281-286
    • /
    • 2019
  • The plastic strain ratio is one of the factors of the deep drawability of metal sheets. The plastic strain ratio of Al sheet is low value. Therefore, it is necessary to increase the plastic strain ratio in order to improve the deep draw ability of the Al sheet. This study investigated the increase of the plastic strain ratio and the texture change of AA3003 sheet after the hot asymmetric rolling. The average plastic strain ratio of the initial AA3003 sheets was 0.69. After 83% hot asymmetric rolling at $200^{\circ}C$, the average plastic strain ratio was 0.83. The average plastic strain ratio of the 83% hot asymmetrically rolled AA3003 sheet at $200^{\circ}C$ is 1.2 times higher than that of the initial AA3003 sheet. The ${\mid}{\Delta}R{\mid}$ of 83% hot asymmetrically rolled AA3003 sheet at $200^{\circ}C$ is 0.83 times lower than that of the initial AA3003 sheet. This result is due to the development of the intensity of ${\gamma}-fiber$ texture and reduces the intensity of {001}<110> and {001}<100> textures after hot asymmetric rolling of AA3003 sheet.

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

Analysis of Forest Fire Spread Rate and Fire Intensity by a Wind Model (모형실험에 의한 풍속변화에 따른 산불의 확산속도와 강도 분석)

  • 채희문;이찬용
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.4
    • /
    • pp.213-217
    • /
    • 2003
  • Forest fire spread and intensity were modeled as a function of wind and fuel. Spread rate and intensity of forest fire were related to weight and thickness of forest fuel beds and to wind speed. Forest fire spread rate and fire intensity were differentiated according to wind speed. Rapid wind speed causes a faster forest fire spread rate and greater fire intensity than does slow wind speed. Relative burning time of the fire from beginning to end in the model was 161 sec at a wind speed of 0.5 m/sec and 146 sec at 1m/sec on the model. Average forest lire spread rate was 0.014 m/sec at a wind speed of 0.5 m/sec and 0.020 m/sec at 1m/sec. Average fire intensity was 0.183 ㎾/m at a wind speed of 0.5 m/sec, 0.259 ㎾/m at 1m/sec. Fire intensity was greater when forest fire spread rate was rapid.

A Study on the wild Rhododendron micranthum for being used as Landscape Plant (꼬리진달래의 조경수목화를 위한 기초연구(1) : 자생지의 생육환경을 중심으로)

  • 이기의;유근창;이병용
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.17 no.2
    • /
    • pp.41-46
    • /
    • 1989
  • Rhododendron micranthum grown over the area of Kyoung Puck, Kang Weon Province is showy and very attractive evergreen broad-leaned shrub of shade resistance. This shrub is considered very useful for exploiting as a garden plant. Environments, growth characteristics and vegetation association in the wild habitat and in the garden planted with this shrub, were investigated to find out some appropriate means of propagation and cultivation of this shrub. The results thus obtained were stated as follows ; 1. Light intensity for the native habitat ranged in the proximity of 9%. The most abundant stand of this shrub occurred in the northen side of mountains, while still some plants were found in the eastern sides also. 2. Soil of the native habitat was acidic (pH 4.4) and infertility. 3. Average elevation of the native habitat was shown to be 230m above the sea level. 4. The plant of the native habitat showed an average of 3.9 new shoots per branch, whereas that of the garden planted (light intensity 100%) showed 1.2, 5% of an average was for sun-burn leaves were noted, while garden Plants(light intensity 100%) showed 90% of them. 5. Other tree species associated with Rhododendron micrathum in the native habitat were primarily Pinus densiflora and secondarily Sorbus alnifolia, hemerocallis aurautiaca, Rubus crataegifolius, and Salix hulteni. 6. Vegetation rate of plant habitats in the Rhododendron growing area was observed to be 0 to 80% involving 27 to 50 species of associated trees in the vegetation for the 10${\times}$10m quadrat area.

  • PDF

Development of Nonpoint Sources Runoff Load Estimation Model Equations for the Vineyard Area (포도밭에 대한 비점오염물질 유출량 추정 모델식 개발)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Yi, Youn-Jung;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.907-915
    • /
    • 2010
  • Agriculture nonpoint pollution source is a significant contributor to water quality degradation. To establish effective water quality control policy, environpolitics establishment person must be able to estimate nonpoint source loads to lakes and streams. To meet this need for orchard area, we investigated a real rainfall runoff phenomena about it. We developed nonpoint source runoff estimation models for vineyard area that has lots of fertilizer, compost specially between agricultural areas. Data used in nonpoint source estimation model gained from real measuring runoff loads and it surveyed for two years(2008-2009 year) about vineyard. Nonpoint source runoff loads estimation models were composed of using independent variables(rainfall, storm duration time(SDT), antecedent dry weather period(ADWP), total runoff depth(TRD), average storm intensity(ASI), average runoff intensity(ARI)). Rainfall, total runoff depth and average runoff intensity among six independent variables were specially high related to nonpoint source runoff loads such as BOD, COD, TN, TP, TOC and SS. The best regression model to predict nonpoint source runoff load was Model 6 and regression factor of all water quality items except for was $R^2=0.85$.

Measurement of turbulence intensity of cage net using the particle imaging velocimetry (입자영상유속계를 이용한 가두리 망지의 난류강도 계측)

  • Bae, Jae-Hyun;An, Heui-Chun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.595-603
    • /
    • 2014
  • This study is aimed to analyze the hydrodynamic characteristics of the cage net in the circulating water channel. It visualized wake flows using a PIV (paricle imaging velocimetry) and analyzed the flow velocity distribution. In addition, the vorticity and turbulence intensity were analyzed from the wake flow distribution and compared changes by flow velocity. Results showed that the average turbulence intensity in the circulating water channel was very stable showing less than 1% in the range between 0.2 and 0.8 m/s. The drag coefficient affecting to the netting was estimated to be 1.35. The flow decreasing rate of the wake in the middle of the netting was 2.1% at the range of 0.2 m/s and it was constant at 6.6-6.9% over the range of 0.4 m/s irrespective of velocity increases. Finally, the change of turbulence intensity by netting and knot mesh could be confirmed. These results can be utilized as a basic information for the future research of flow characteristics by fishing nets and meshes.