• Title/Summary/Keyword: Average Current Mode

Search Result 161, Processing Time 0.028 seconds

Average-Current-Mode Control of Pseudo-Continuous Current Mode BUCK-BOOST Type Solar Array Regulator (의사-연속전류모드 벅-부스트 형 태양전력 조절기의 평균전류모드제어)

  • Yang, JeongHwan;Yun, SeokTeak
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.72-75
    • /
    • 2012
  • A solar array makes a Solar Array Regulator (SAR) for Low-Earth-Orbit satellite have different small signal characteristic. Therefore, an Average-Current-Mode (ACM) controller cannot control the BUCK-BOOST type SAR which operates in a current region of the solar array. In this paper, we present the Pseudo-Continuous Current Mode (PCCM) BUCK-BOOST Type SAR which can be controller by the ACM Controller. We explain the circuit operation of the PCCM BUCK-BOOST Type SAR, derive its small signal transfer function and design ACM Controller. Finally, we verify the ACM control of the PCCM BUCK-BOOST Type SAR by using a simulation.

A Study on the Power Factor Improvement of Single-Phase Bridgeless Voltage Doubler Converter (단상 브리지리스 배전압 변환기의 역률 개선에 관한 연구)

  • Koo, Do-Yeon;Kim, Dong-Wook;Lim, Seung-Beom;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.169-170
    • /
    • 2011
  • PFC(Power Factor Correction) converters are commonly designed for CCM(Continuous Conduction Mode). However, DCM(Discontinuous Conduction Mode) appears in the input current near the ZCP(Zero Crossing Point) at light loads, resulting in input current distortion. It is caused by inaccurate average current values obtained in DCM. This paper studies a simple digital control scheme that can be operated in both CCM and DCM with minimal changes to the CCM average current control structure.

  • PDF

Design and Verification of the Modularized Solar Array Regulator using Average-current Mode Control (평균전류모드 제어방법을 적용한 병렬형 태양전력조절기 설계 및 제작)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Beak;Jang, Sung-Soo;Lee, Jong-In
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.437-441
    • /
    • 2004
  • Recently, as the power capability of satellites increase, we need to develop a new SAR(Solar Array Regulator) with much higher power capacity whenever we design a power system of a new satelite. In this case, modular design method could be a good solution for this kind of problem. But when we use a modular method in the design of the parallelled converter, it is very important to share current equally between each module connected in paralled. In this paper, we study how to design the optimum current control-loop and voltage control-loop when we apply average current-mode control method to the parallel SAR. With the design results, we make a protype of the 3-module paralleling SAR and verify its performances.

  • PDF

Comparative Performance Evaluation of Current-Mode Controls Adapted to Asymmetrical Half-Bridge Dc-to-Dc Converters (비대칭 하프 브릿지 직류-직류 컨버터에 적용된 전류 제어의 성능평가 비교)

  • Lim, Won-Seok;Choi, Byung-Cho;Park, Sung-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.257-260
    • /
    • 2005
  • Three different current-mode control schemes, peak current-mode control, charge control, and average current-mode control, are investigated for applications to asymmetrical half-bridge dc-to-dc converters. The principles, implementation, and performance of the three control schemes are compared in an attempt to identify the irrespective merits and limitations. Design examples for feedback compensations are given for the three control schemes. A 50 W experimental asymmetrical half-bridge dc-to-dc converter was used to experimentally verify the theoretical results of the paper.

  • PDF

A Study on Modeling and Damping of High-Frequency Leakage Currents in PWM Inverter Feeding an Induction Motor (PWM 인버어터로 구동되는 유도 전동기의 고주파 누설전류 모델링 및 억제에 관한 연구)

  • 이재호;전진휘;홍정표;강필순;박성준;김철우
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.18-22
    • /
    • 1998
  • A PWM inverter with an induction motor often has a problem with a high frequency leakage current that flows through stray capacitor between stator windings and a motor frame to ground. This paper presents an equivalent circuit for high frequency leakage currents in PWM inverter feeding an induction motor, which forms an LCR series resonant circuit. A conventional common mode ckoke or reactor in series between the ac terminals of a PWM inverter and those of an ac motor is not effective to reduce the rms and average values of the leakage current, but effective to reduce the peak value. Furthermore, this paper proposes a leakage current damper which is different in damping principle from the conventional common mode choke. It is shown theoretically and experimentally that the leakage current damper is able to reduce the rms value of the leakage current to 25%, where the core used in the leakage current damper is smaller than that of the conventional common-mode choke

  • PDF

Design and Analysis of a Battery Charge and Discharge Regulator of Communication Satellite (통신위성 배터리 충,방전기 설계 및 해석)

  • Choe,Jae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.118-126
    • /
    • 2003
  • In this study, a battery charge and discharge regulator of modular type is designed as paralleled bi-directional converter that is possible to provide the power without failure not only in the steady state but also in the transient period by the step load variation or the unexpected faults among the converter modules. Each converter module is designed to get stability, performance, reliability, and maintainability and the average current mode method used for controller has the advantages such as noise immunity, fast response, and the real average current signal acquisition. The equivalent model and small signal model for the paralleled battery chargerIdischarger are presented, and also the transfer functions are analyzed for the CCM(Continuous Charge Mode), CDM(Continuous Discharge Mode) and DDM(Discontinuous Discharge Mode). The experiments of the paralleled bi-directional converter are carried out in the step load variation, and in faults of one converter module respectively. And the performance of paralleled bi-directional converter is verified via the experimental results.

Design of a 64×64-Bit Modified Booth Multiplier Using Current-Mode CMOS Quarternary Logic Circuits (전류모드 CMOS 4치 논리회로를 이용한 64×64-비트 변형된 Booth 곱셈기 설계)

  • Kim, Jeong-Beom
    • The KIPS Transactions:PartA
    • /
    • v.14A no.4
    • /
    • pp.203-208
    • /
    • 2007
  • This paper proposes a $64{\times}64$ Modified Booth multiplier using CMOS multi-valued logic circuits. The multiplier based on the radix-4 algorithm is designed with current mode CMOS quaternary logic circuits. Designed multiplier is reduced the transistor count by 64.4% compared with the voltage mode binary multiplier. The multiplier is designed with Samsung $0.35{\mu}m$ standard CMOS process at a 3.3V supply voltage and unit current $5{\mu}m$. The validity and effectiveness are verified through the HSPICE simulation. The voltage mode binary multiplier is achieved the occupied area of $7.5{\times}9.4mm^2$, the maximum propagation delay time of 9.8ns and the average power consumption of 45.2mW. This multiplier is achieved the maximum propagation delay time of 11.9ns and the average power consumption of 49.7mW. The designed multiplier is reduced the occupied area by 42.5% compared with the voltage mode binary multiplier.

A Study on Boost Converter for Power Factor Correction (역률 개선을 위한 승압형 컨버터에 대한 연구)

  • Lee, C.H.;Kim, D.U.;Lee, S.G.;Sung, N.K.;Lee, S.H.;Oh, B.H.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1052-1054
    • /
    • 2001
  • This paper describes a boost converter to be operated at the boundary of continuous current mode(CCM) and discontinuous current mode(DCM) for power factor correction and low cost. A control method to be utilized in simulation is a average-current mode method in case of operating in CCM. The simulation results show that Better is the CCM converter then the DCM converter in harmonic content and input current waveform. And A Double-boost converter is superior to single-boost converter for input-current harmonic.

  • PDF

A Study on Power Factor for Correction Boost Converter (승압형 컨버터를 이용한 역률개선에 관한 연구)

  • Lee, K.G.;Oh, B.H.;Lee, S.H.;Jeon, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.14-16
    • /
    • 2004
  • This paper describes a boost converter to be operated at the boundary of continuous current mode(CCM) and discontinuous current mode(DCM) for power factor correction and low cost. A control method to be utilized in simulation is a average Current mode method in case of operating in CCM. The simulation results show that Better is the CCM converter then the DCM converter in harmonic content and input current waveform. And A Double-boost converter is superior to single-boost converter for input-current harmonic.

  • PDF

Switching-Mode BJT Driver for Self-Oscillated Push-Pull Inverters

  • Borekci, Selim;Oncu, Selim
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.242-248
    • /
    • 2012
  • Self oscillating current fed push pull resonant inverters can be controlled without using special drivers. Dc current flows through the choke coil and the power switches, although the driving signals of the power switches are sinusoidal. When the base current is near zero, the transistors cannot be operated in switching mode. Hence higher switching power losses and instantaneous peak power during off transitions are observed. In this study, an alternative design has been proposed to overcome this problem. A prototype circuit has been built which provides dc bias current to the base of the transistors. Experimental results are compared with theoretical calculations to demonstrate the validity of the design. The proposed design decreases the peak and average power losses by about 8 times, when compared to conventional designs.