• Title/Summary/Keyword: Available lift

Search Result 57, Processing Time 0.032 seconds

Measurement of maxillary sinus volume and available alveolar bone height using computed tomography (치과 임플란트 수술 계획시 CT를 이용한 상악동 체적 및 치조골량 측정)

  • Lee Jae-Hak;Han Won-Jeong;Choi Young Hi;Kim Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.33 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • Purpose: To aid in determining the volume of graft bone required before a maxillary sinus lift procedure and compare the alveolar bone height measurements taken by panoramic radiographs to those by CT images. Materials and Methods : Data obtained by both panoramic radiographs and CT examination of 25 patients were used in this study. Maxillary sinus volumes from the antral floor to heights of 5 mm, 10 mm, 15 mm, and 20 mm, were calculated. Alveolar bone height was measured on the panoramic images at each maxillary tooth site and corrected by magnification rate (PBH). Available bone height (ABH) and full bone height (FBH) was measured on reconstructed CT images. PBH was compared with ABH and FBH at the maxillary incisors, canines, premolars, and molars. Results: Volumes of the inferior portion of the sinuses were 0.55 ± 0041 ㎤ for 5 mm lifts, 2.11 ± 0.68 ㎤ for 10 mm, 4.26 ± 1.32 ㎤ for 15 mm, 6.95 ± 2.01 ㎤ for 20 mm. For the alveolar bone measurement, measurements by panoramic images were longer than available bone heights determined by CT images at the incisor and canine areas, and shorter than full bone heights on CT images at incisor, premolar, and molar areas (p<0.001). Conclusion: In bone grafting of the maxillary sinus floor, 0.96 ㎤ or more is required for a 5 mm-lift, 2.79 ㎤ or more for a 10 mm-lift, 5.58 ㎤ or more for a 15 mm-lift, and 8.96 ㎤ or more for a 20 mm-lift. Maxillary implant length determined using panoramic radiograph alone could result in underestimation or overestimation, according to the site involved.

  • PDF

Unsteady Force Characteristics on Foils Undergoing Pitching Motion (피칭 운동익에 작용하는 비정상 유체력)

  • Yang Chang-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.117-125
    • /
    • 2006
  • In the present study the unsteady forces acting on the pitching foils such as a flat plate, NACA0010, NACA0020, NACA65-0910 and BTE have been measured by using a six-axis sensor in a circulating water tunnel at a low Reynolds number region. The unsteady characteristics of the dynamic drag and lift have been compared to the quasi-steady ones which are measured under the stationary condition. The pitching motion is available for keeping the lift higher after the separation occurs. Especially, the characteristics of the dynamic lift are quite different from the quasi-steady one at high pitching frequency regions. As the pitching frequency deceases, the amplitude of the dynamic lift becomes closer to the quasi-steady one. However, the phase remains different between the steady and unsteady conditions even at low pitching frequencies. On the other hand, the dynamic drag is governed strongly by the angle of attack.

A Study on the Improvement Method for Preventing Lift Stop Position Error using Double Sensor Based Lift Stop Sensing Device (Double Sensor Type 감지장치를 통한 리프트 정지위치 오차누적 개선 방안 제안)

  • Lee, Jong-Hyun;Kwon, Soon-Wook;Park, Sung-Ung;Lee, Mi-Na
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.2
    • /
    • pp.110-119
    • /
    • 2012
  • The Plan and equipment of vertical lifting are very important in high-rise building construction site, and unmanned lifts usage is increasing for financial and efficient reason. However if lift stop position error occur, It can be accumulated. And the lift can not be available during an engineer fix the problem. So loss of time and cost will occur when lifts have problems. This paper reports an improved lift stop position sensing device for preventing loss of time and cost from lift stop position error. The result of tests showed that the system has a correction function of lift stop position error, and the accuracy of device which was developed in this paper was about 9.75mm better than existing equipment.

Comparison of aerodynamic performances of various airfoils from different airfoil families using CFD

  • Kaya, Mehmet Numan;Kok, Ali Riza;Kurt, Huseyin
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.239-248
    • /
    • 2021
  • In this study, three airfoil families, NACA, FX and S, in each case three from each series with different shapes were investigated at different angles of attack using Computational Fluid Dynamics (CFD) method. To verify the CFD model, simulation results of the NACA 0012 airfoil was compared against the available experimental data and k-ω SST was used as the turbulence model. Lift coefficients, lift to drag ratios and pressure distributions around airfoils were obtained from the CFD simulations and compared each other. The simulations were performed at three Reynolds numbers, Re=2×105, 1×106and 2×106, and angle of attack was varied between -6 and 12 degrees. According to the results, similar lift coefficient values were obtained for symmetric airfoils reaching their maximum values at similar angles of attack. Maximum lift coefficients were obtained for FX 60-157 and S 4110 airfoils having lift coefficient values around 1.5 at Re=1×106 and 12 degrees of angle of attack. Flow separation occurred close to the leading edge of some airfoils at higher angles of attack, while some other airfoils were more successful in keeping the flow attached on the surface.

The Objectives of EFD-CFD Comparison Workshop and Future Plan (EFD-CFD 비교워크샵 목적과 발전 방향)

  • Kim, Cheolwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.191-193
    • /
    • 2017
  • EFD-CFD Comparison Workshop was proposed based on the drag prediction workshop and high lift prediction workshop of AIAA. This workshop is organized to escalate the levels of wind tunnel test and computational fluid dynamics and to escalate the level of domestic aerodynamic technology through the collaboration of both areas. For three benchmark cases of which wind tunnel test results are available, comparison workshops have been held since 2015.

Best-Estimate Analysis of MSGTR Event in APR1400 Aiming to Examine the Effect of Affected Steam Generator Selection

  • Jeong, Ji-Hwan;Chang, Keun-Sun;Kim, Sang-Jae;Lee, Jae-Hun
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.358-369
    • /
    • 2002
  • Abundant information about analyses of single steam generator tube rupture (SGTR) events is available because of its importance in terms of safety. However, there are few literatures available on analyses of multiple steam generator tube rupture (MSGTR) events. In addition, knowledge of transients and consequences following a MSGTR event are very limited as there has been no occurrence of MSGTR event in the commercial operation of nuclear reactors. In this study, a postulated MSGTR event in an APR1400 is analyzed using thermal-hydraulic system code MARSI.4. The present study aims to examine the effects of affected steam generator selection. The main steam safety valve (MSSV) lift time for four cases are compared in order to examine how long operator response time is allowed depending on which steam generate. (S/G) is affected. The comparison shows that the cases where two steam generators are simultaneously affected allow longer time for operator action compared with the cases where a single steam generator is affected. Furthermore, the tube ruptures in the steam generator where a pressurizer is connected leads to the shortest operator response time.

Preliminary Design of Human Powered Aircraft by the Consideration of Aerodynamic Performance (공기역학적 성능을 고려한 인간동력항공기 개념 설계)

  • Kang, Hyungmin;Kim, Cheolwan
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.180-185
    • /
    • 2013
  • In this study, preliminary design of human powered aircraft was performed by considering the aerodynamic performance. For this, overall weight including the aircraft and pilot was determined. Then, the main wing and horizontal/vertical tail were designed with appropriate selection of the airfoils and planform shapes. Based on these, three dimensional flow was calculated to obtain lift and drag coefficients and the position of center of gravity (CG). Consequently, it was shown that the lift and power of the aircraft satisfied the constraints of the minimum required lift and the pilot's available power. Also, the CG of the aircraft was located at aerodynamic center (AC) of the main wing, which guaranteed 26% of the static margin.

Unsteady Viscous Flow over Elliptic Cylinders At Various Thickness with Different Reynolds Numbers

  • Kim Moon-Sang;Sengupta Ayan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.877-886
    • /
    • 2005
  • Two-dimensional incompressible Navier-Stokes equations are solved using SIMPLER method in the intrinsic curvilinear coordinates system to study the unsteady viscous flow physics over two-dimensional ellipses. Unsteady viscous flows over various thickness-to-chord ratios of 0.6, 0.8, 1.0, and 1.2 elliptic cylinders are simulated at different Reynolds numbers of 200, 400, and 1,000. This study is focused on the understanding the effects of Reynolds number and elliptic cylinder thickness on the drag and lift forces. The present numerical solutions are compared with available experimental and numerical results and show a good agreement. Through this study, it is observed that the Reynolds number and the cylinder thickness affect significantly the frequencies of the force oscillations as well as the mean values and the amplitudes of the drag and lift forces.

Hydrodynamics of single-deadrise hulls and their catamaran configurations

  • Bari, Ghazi S.;Matveev, Konstantin I.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.305-314
    • /
    • 2017
  • Asymmetric planing hulls are often used on high-speed catamarans. In this study, a linearized potential-flow method is applied for modeling steady hydrodynamics of single asymmetric hulls and their catamaran setups. Numerical results are validated with available experimental data and empirical correlations. Parametric calculation results are presented for the lift coefficient and the center of pressure for variable hull geometry, spacings, and speed regimes. The lift coefficient is found to increase at smaller hull spacings and decrease at higher Froude numbers and higher deadrise angles.

AN ANALYSIS OF THE AERODYNAMIC CHARACTERISTICS OF A T-50 CONFIGURATION USING A PANEL CODE AND ITS VALIDATION (패널코드를 이용한 T-50 형상의 공력특성 예측 및 검증)

  • Park, S.W.;Kim, D.J.;Je, S.E.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.131-135
    • /
    • 2006
  • The aerodynamic characteristics of a T-50 aircraft configuration are investigated by a subsonic panel method. Panel methods are best applicable to the lifting surfaces such as wings and airfoils. Source and doublets are used in the present code as a basic singularities of the panel technique. The panel method is first assessed by applying it to several benchmark problems for which other solutions and experimental data are available, such as a swept wing and wing body configuration. The prediction results are compared with experimental data and show good agreement in all cases considered. Finally, the method is applied to a T-50 aircraft configuration and excellent agreement with flight test data in lift coefficients is found.

  • PDF