본 연구는 화강암질암 지역의 자연사면에서 발생하는 토석류 산사태의 발생지점을 확률론적 예측하기 위하여 기 개발된 로지스틱 회귀모델을 수정하고자 한다. 기 모델의 단점인 일부 범주형 변수사용을 제거하여 예측률의 신뢰도 및 예측도면 작성시의 정확성을 높인 새로운 예측모델을 제안하고자 한다. 새롭게 개발된 모델은 암상, 지형인자 2개 및 토질인자 3개를 사용하여 통계적으로 86%이상의 예측률을 확보하였다. 본 모델의 적용성을 검증하기 위하여 태풍 '루사'로 인해 산사태가 집중적으로 발생한 강릉지역에 적용하여 산사태 예측도를 작성하였다. 예측결과 사천지역의 경우 본 모델에서 고려하지 못한 산불의 영향으로 산불피해지역에서 근소한 차이를 보여주고 있으나, 주문진-연곡지역의 경우는 예측결과가 실제 산사태 발생위치와 잘 일치하고 있다. 따라서 본 모델은 우리나라의 화강암질암지역에 적용하여 널리 활용될 수 있을것으로 판단된다.
네트워크 기반의 적절한 컴퓨팅은 네트워크 대역폭의 가용성에 의존한다. 백본 네트워크 용량과 액세스 네트워크 상에 심각한 버틀넥이 발생하여 ISP 사업자와 고객 간의 갭이 발생된다면 그만큼 ISP 사업자는 사업에 불이익을 초래할 수 있다. 이러한 상황이 발생되기 이전 ISP 사업자가 트래픽량 예측과 종단간 오버로드가 높은 링크 구간을 감지할 수 있다면 ISP 사업자와 고객 간의 갭은 그만큼 줄어 들 수 있을 것으로 판단된다. 따라서 본 논문은 트래픽량 예측과 종단간 오버로드가 높은 링크 구간을 감지 가능한 소프트웨어로 ACE, ADM, Flow Analysis를 소개한다. 이들 툴을 이용하여 전자상거래의 연속적인 트랜잭션을 실망에서 측정한 후 측정된 네트워크 데이터를 가상 망 환경에 임포트하고 백그라운드 트래픽을 생성한다. 이와 같은 가상 망 환경을 토대로 점차적인 사용자 수 증가에 따른 트래픽량 예측과 링크 로드가 높은 구간을 시뮬레이션 결과로 알 수 있었다.
본 연구는 비선형모델인 퍼지이론을 이용하여 화성암 지역의 임도성토사면을 대상으로 붕괴가능성 예측모델을 개발하였다. 그 결과는 다음과 같다. 임도 성토사면 붕괴요인의 중요도는 성토사면길이, 성토사면경사, 사면구성물질, 사면방위, 노선위치 등의 순으로 나타났으며, 붕괴위험도는 성토사면길이 8m 이상, 성토사면경사 $40^{\circ}$ 이상, 풍화암 사면, 북동사면 및 능선부 사면에서 크게 나타났다. 임도 성토사면의 붕괴예측 모델은 퍼지적분값 0.5를 기준으로 할 때, 최적화 계수(c)가 0.15, ${\lambda}$값이 3.1165인 경우에 최적 모델로 산출되었으며, 이때의 판별적중률은 86.8%로 모델의 적합성이 매우 높은 것으로 나타났다.
군에서는 수요예측에 대한 중요성을 인식하여 수리부속에 대해 예측 정확도 향상을 위한 많은 연구가 이루어지고 있다. 수리부속 수요예측은 예산 운영과 장비 가동률 측면에서 매우 중요한 요소가 되고 있다. 그러나 현재 군에서 적용중인 시계열 모형으로는 수요량의 변동과 발생주기가 일정하지 않은 간헐적 수요에 대해서는 예측에 한계가 있는 실정이다. 따라서, 본 연구는 공군 패트리어트 수리부속의 간헐적 수요에 대한 예측 정확도를 제고하는 방법을 제시하고자 하였다. 이를 위해서 2013년부터 2019년까지의 701개의 수리부속 소모개수를 토대로 수요 유형을 구분하여 수리부속의 간헐적 수요 자료를 수집하였다. 또한, 장비 고장에 영향을 줄 수 있는 외부 요인으로는 기온, 장비운영시간을 식별하여 입력변수로 선정하였다. 그 후, 소모개수와 외부 요인을 통해 군에서 적용하는 시계열 모형과 제안하는 데이터 마이닝 모형으로 예측을 실시하여 모형별 예측 정확도를 판단했다. 예측 결과로 기존의 시계열 모형과 비교하여 데이터 마이닝 모형의 예측 정확도가 높았으며, 그 중 다층 퍼셉트론 모형이 가장 우수한 성능을 보였다.
Use of recycled aggregates that are constituents of concrete or asphalt-based structures has become popular because the recycling is an eco-friendly way to overcome the depletion of natural aggregates. In order to adopt the recycled aggregates for backfilling a power transmission pipeline trench, their thermal resistivity should be low enough to prevent thermal runaway in the transmission system. In this study, a series of laboratory tests with QTM-500 and KD2 Pro was performed to measure the thermal resistivity of recycled aggregates prepared from various sources. Relationships between the thermal resistivity of recycled aggregates and the water content have been obtained with consideration of compaction effort. Similar to natural soils, the thermal resistivity of the recycled aggregates decreases with increasing the water content. In addition, this study compared the experimental data with conventional prediction models for the thermal resistivity in the literature, which suggests the availability of the recycled aggregates as backfill material substituting for natural aggregates when backfilling the power transmission pipeline trench.
위성통신서비스의 가용율 및 시스템 throughput 향상을 위해 사용하는 리턴링크 ACM(Adaptive Coding & Modulation)의 원리를 기술하였고, LMS(Least Mean Square) 기반 적응형 필터를 이용한 채널 예측 및 단말의 전송 MODCOD(Modulation & Code rate) 결정 알고리즘의 최적화 과정을 서술하였다. 시뮬레이션 결과 LMS 알고리즘은 필터 계수가 2차이고, ${\mu}$(step size) 값이 0.00026인 경우 MMSE(Minimum Mean Square Error)가 최소임을 알 수 있다. 이때 MODCOD 결정 알고리즘을 위한 SNR 마진이 0.3dB일 경우 MODCOD 결정 오차를 최소화 할 수 있음을 확인하였다.
장시간 저장 후 짧은 시간 동안 운용되는 특성을 갖는 보증 유도탄은 지속적인 신뢰도 저하를 개선하기 위해 주기적인 검사정책을 사용한다. 본 연구에서는 유도탄의 저장 신뢰도 유지를 위해 주기적 검사 개념을 기초로 검사장비의 불완전성에 따라 유도탄 구성품을 정비계단에 맞추어 분류하고, 검사 시 발생하는 손상확률과 정비과정의 불완전성에 의해 손상되는 확률을 고려하여 최적의 검사주기 산출과정을 제시한 기존 연구를 검토한다. 또한 검토된 기존 연구를 바탕으로 주기검사 과정에서 유도탄이 손상되는 확률과 유도탄의 운용 형태 및 정비 형태를 고려한 제약사항을 포함하는 시뮬레이션 모델을 설정하고, 시뮬레이션 전용 패키지를 활용하여 분석함으로써 실제 운용 환경에서 최적의 보증유도탄 검사주기, 주기검사소, 정비창을 설정함으로써 유사 유도탄체계에서 활용이 가능한 시뮬레이션모델을 제안한다.
While global manufacturing is becoming more competitive due to variety of customer demand, increase in production cost and uncertainty in resource availability, the future ability of manufacturing industries depends upon the implementation of Smart Factory. With the convergence of new information and communication technology, Smart Factory enables manufacturers to respond quickly to customer demand and minimize resource usage while maximizing productivity performance. This paper presents the development of a big data analytics platform architecture for Smart Factory. As this platform represents a conceptual software structure needed to implement data-driven decision-making mechanism in shop floors, it enables the creation and use of diagnosis, prediction and optimization models through the use of data analytics and big data. The completion of implementing the platform will help manufacturers: 1) acquire an advanced technology towards manufacturing intelligence, 2) implement a cost-effective analytics environment through the use of standardized data interfaces and open-source solutions, 3) obtain a technical reference for time-efficiently implementing an analytics modeling environment, and 4) eventually improve productivity performance in manufacturing systems. This paper also presents a technical architecture for big data infrastructure, which we are implementing, and a case study to demonstrate energy-predictive analytics in a machine tool system.
Fanos, Ali Mutar;Pradhan, Biswajeet;Mansor, Shattri;Yusoff, Zainuddin Md;Abdullah, Ahmad Fikri bin;Jung, Hyung-Sup
대한원격탐사학회지
/
제35권1호
/
pp.93-115
/
2019
The availability of high-resolution laser scanning data and advanced machine learning algorithms has enabled an accurate potential rockfall source identification. However, the presence of other mass movements, such as landslides within the same region of interest, poses additional challenges to this task. Thus, this research presents a method based on an integration of Gaussian mixture model (GMM) and ensemble artificial neural network (bagging ANN [BANN]) for automatic detection of potential rockfall sources at Kinta Valley area, Malaysia. The GMM was utilised to determine slope angle thresholds of various geomorphological units. Different algorithms(ANN, support vector machine [SVM] and k nearest neighbour [kNN]) were individually tested with various ensemble models (bagging, voting and boosting). Grid search method was adopted to optimise the hyperparameters of the investigated base models. The proposed model achieves excellent results with success and prediction accuracies at 95% and 94%, respectively. In addition, this technique has achieved excellent accuracies (ROC = 95%) over other methods used. Moreover, the proposed model has achieved the optimal prediction accuracies (92%) on the basis of testing data, thereby indicating that the model can be generalised and replicated in different regions, and the proposed method can be applied to various landslide studies.
The fourth industrial revolution, internet of things, and the expansion of online web services have increased an exponential growth and deployment in the number of cloud data centers (CDC). The cloud is emerging as new paradigm for delivering the Internet-based computing services. Due to the dynamic and non-linear workload and availability of the resources is a critical problem for efficient workload and resource management. In this paper, we propose the particle swarm optimization (PSO) based gated recurrent unit (GRU) neural network for efficient prediction the future value of the CPU and memory usage in the cloud data centers. We investigate the hyper-parameters of the GRU for better model to effectively predict the cloud resources. We use the Google Cluster traces to evaluate the aforementioned PSO-GRU prediction. The experimental shows the effectiveness of the proposed algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.