• Title/Summary/Keyword: Auxiliary Power

Search Result 967, Processing Time 0.031 seconds

Modified Modular Multilevel Converter with Submodule Voltage Fluctuation Suppression

  • Huang, Xin;Zhang, Kai;Kan, Jingbo;Xiong, Jian
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.942-952
    • /
    • 2017
  • Modular multilevel converters (MMCs) have been receiving extensive research interest in high/medium-voltage applications due to its modularity, scalability, reliability, high-voltage capability, and excellent harmonic performance. Submodule capacitors are usually rather bulky because they have to withstand fundamental frequency voltage fluctuations. To reduce the capacitance of these capacitors, this study proposes a modified MMC with an active power decoupling circuit within each submodule. The modified submodule contains an auxiliary half bridge, with its capacitor split in two. Also, the midpoints of the half bridge and the split capacitors are connected by an inductor. With this modified submodule, the fundamental frequency voltage fluctuation can be suppressed to a great extent. The second-order voltage fluctuation, which is the second most significant component in submodule voltage fluctuations, is removed by the proper control of the second-order circulating current. Consequently, the submodule capacitance is significantly reduced. The viability and effectiveness of the proposed new MMC are confirmed by the simulation and experimental results. The proposed MMC is best suited for medium-voltage applications where power density is given a high priority.

Development of Simplified DNBR Calculation Algorithm using Model-Based Systems Engineering Methodology

  • Awad, Ibrahim Fathy;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.24-32
    • /
    • 2018
  • System Complexity one of the most common cause failure of the projects, it leads to a lack of understanding about the functions of the system. Hence, the model is developed for communication and furthermore modeling help analysis, design, and understanding of the system. On the other hand, the text-based specification is useful and easy to develop but is difficult to visualize the physical composition, structure, and behaviour or data exchange of the system. Therefore, it is necessary to transform system description into a diagram which clearly depicts the behaviour of the system as well as the interaction between components. According to the International Atomic Energy Agency (IAEA) Safety Glossary, The safety system is a system important to safety, provided to ensure the safe shutdown of the reactor or the residual heat removal from the reactor core, or to limit the consequences of anticipated operational occurrences and design basis accidents. Core Protection Calculator System (CPCS) in Advanced Power Reactor 1400 (APR 1400) Nuclear Power Plant is a safety critical system. CPCS was developed using systems engineering method focusing on Departure from Nuclear Boiling Ratio (DNBR) calculation. Due to the complexity of the system, many diagrams are needed to minimize the risk of ambiguities and lack of understanding. Using Model-Based Systems Engineering (MBSE) software for modeling the DNBR algorithm were used. These diagrams then serve as the baseline of the reverse engineering process and speeding up the development process. In addition, the use of MBSE ensures that any additional information obtained from auxiliary sources can then be input into the system model, ensuring data consistency.

A Study on the Optimization of Heat Flux in Engine Room of Auxiliary Power Unit for Self-Propelled Artillery (자주포용 보조동력장치 엔진룸의 열유동 최적화에 관한 연구)

  • Noh, Sang Wan;Park, Young Min;Kim, Sung Hoon;Lee, Jae Dong;Kim, Byung Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.629-635
    • /
    • 2019
  • In this study, we analyzed the effect of FAN and oil cooler application on APU. MIL-STD-810 was applied to the atmospheric environment and radiation dose in order to perform thermal flow analysis. The heat flow was analyzed for the case in which the inlet / outlet fan was applied (Case 1), the case in which the inlet fan and the oil cooler were applied (Case 2), and the case in which the inlet / outlet fan and the oil cooler were applied (Case 3). As a result, it was confirmed that the cylinder head temperature of Case 3 was 21.4 times lower than that of Case 1 and 8.0 times lower than that of Case 2. Experiments were conducted under the same ambient conditions in order to examine the validity of the results. The numerical values and experimental results showed a difference of less than 7%. Through this, we were able to confirm that the APU heat flow optimization model satisfies the design conditions. The results of this study are expected to be used as basic data for optimizing heat flow of APU.

Soft Switching Control Method for Photovoltaic AC Module Flyback Inverter using Synchronous Rectifier (동기 정류기를 이용한 태양광 모듈용 플라이백 인버터 소프트 스위칭 제어 기법)

  • Jang, Jin-Woo;Kim, Young-Ho;Choi, Bong-Yeon;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.312-321
    • /
    • 2013
  • In this paper, high efficiency control method for flyback inverter with synchronous rectifier(SR) based on photovoltaic AC modules is proposed. In this control method, the operation of SR is classified according to the voltage spike across main switch SP. When the voltage spike across SP is lower than the rating voltage of SP, the operation of active clamp circuit is interrupted for reducing the switching loss of auxiliary switch. In this time, the SR is operated for soft-switching of SP. When the voltage spike across Sp is higher than the rating voltage of SP, the operation of active circuit is activated for reducing the voltage spike. The SR is operated for reducing the conduction loss of secondary output diode. Thus, a switching loss of the main switch can be reduced in low power region, and weighted-efficiency can be improved. A theoretical analysis and the design principle of the proposed method are provided. And validity is confirmed through simulation and experimental results.

Development of a 25kW-Class PEM Fuel Cell System for the Propulsion of a Leisure Boat (선박 추진용 25kW급 고분자전해질 연료전지 시스템 개발)

  • Han, In-Su;Jeong, Jeehoon;Kho, Back-Kyun;Choi, Choeng Hoon;Yu, Sungju;Shin, Hyun Khil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.271-279
    • /
    • 2014
  • A 25kW-class polymer electrolyte membrane (PEM) fuel cell system has been developed for the propulsion of a leisure boat. The fuel cell system was designed to satisfy various performance requirements, such as resistance to shock, stability under rolling and pitching oscillations, and durability under salinity condition, for its marine applications. Then, the major components including a 30kW-class PEM fuel cell stack, a DC-DC converter, a seawater cooling system, secondary battery packs, and balance of plants were developed for the fuel cell system. The PEM fuel cell stack employs a unique design structure called an anodic cascade-type stack design in which the anodic cells are divided into several blocks to maximize the fuel utilization without hydrogen recirculation devices. The performance evaluation results showed that the stack generated a maximum power of 31.0kW while maintaining a higher fuel utilization of 99.5% and an electrical efficiency of 56.1%. Combining the 30-kW stack with other components, the 25kW-class fuel cell system boat was fabricated for a leisure. As a result of testing, the fuel cell system reached an electrical efficiency of 48.0% at the maximum power of 25.6kW with stable operability. In the near future, two PEM fuel cell systems will be installed in a 20-m long leisure boat to supply electrical power up to 50kW for propelling the boat and for powering the auxiliary equipments.

Development of outage-free installation method and equipments for underground power distribution system (지중배전선로 무정전 공법의 최적화를 위한 장비 개발)

  • Yu, K.Y.;Joo, J.M.;Lee, Y.S.;Kim, Y.M.;Kang, N.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.122-124
    • /
    • 2005
  • Underground distribution system is a trend due to the successive development of metropolitan area and satellite cities and the environment of the commercial and residential areas. The high quality of electricity, which is related with the minimal outage duration time due to the maintenance work for the underground distribution line, is mandatory. Hence, the construction method and tools for the outage-free maintenance construction have been required for underground distribution system. So far, all the efforts for outage-free maintenance for the underground distribution have been limited only to the survey for foreign countries situation and the theoretical provision; thus, It is required to develop the various construction method and the application tools. Differently from the aerial line, the construction of the underground cable is complicated and the insulation distance between conductor and shield should be maintained in loadmaking/breaking operation, though the apparatus connected with cable is a deadfront type. Also since the apparatus is installed above ground, by-pass of faulted area at busy area needs a variety of high technologies. Therefore, in this these, the authors introduce the development status of the loadbreak connectors, connection facilities, outage-free maintenance system for secondary side, a secondary auxiliary bushing and additional tools so that there can be more progress on this field.

  • PDF

A Study on an Impedance Matching Technique for Rail Power Line Communication (레일 전력선통신을 위한 임피던스 정합방안 연구)

  • Seo, Ill-Kwon;Ahn, Seung-Ho;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.202-207
    • /
    • 2016
  • An auxiliary real-time train communications system among drivers, train-traffic controllers and field workers is necessary to share hazard information (i.e. rockfall detection, track maintenance) in low visibility zones (long tunnels and steep curved track). To develop the appropriate communication system, this paper proposes a new way of power line communication using the rail track (Rail - PLC), which has little noise and distortion of attenuation. Therefore, it is important to measure the impedance of the rail and to apply an impedance matching technique to increase the transmission characteristic of the Rail - PLC. This study would evaluate the reflection and the transmission characteristics of the rail using a network analyzer and an impedance matching transformer. The suitable impedance matching ratio was 1:3.28 from the result of back-to-back testing. The results confirmed that the transformer can improve the performance of the transmission signal in Rail - PLC using an impedance matching technique.

A Preliminary Evaluation of NeuroGuide and IVA + Plus as Diagnostic Tools for Attention-Deficit Hyperactivity Disorder (주의력결핍 과잉행동장애의 진단 보조도구로 뉴로가이드와 IVA + Plus의 유용성에 관한 예비연구)

  • Yang, Jung-In;Kim, So-Yul;Kim, Young-Sung;Lee, Jae-Won
    • Korean Journal of Biological Psychiatry
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2012
  • Objectives : This study was designed to investigate the usability of IVA + Plus (Continuous Performance Test) and Neuro-Guide [Quantitative electroencephalography (EEG) normative database] as an auxiliary diagnostic tools for attention-deficit hyperactivity disorder (ADHD). Methods : The scores of IVA + Plus and resting EEG were obtained from 34 elementary school-aged children. Also, the Korean ADHD Rating Scale (K-ARS) and the Diagnostic Interview Schedule for Children version IV (DISC-IV) was done for the parent of them. From the result of the DISC-IV, we divided them into three groups, ADHD Not Otherwise Specified (NOS), and Normal Control (NC). Using NeuroGuide, the z-scores of relative power for delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (12-25 Hz) were calculated. Then the correlation and variance analysis were done to investigate the differences between three groups. Results : The scores of IVA + Plus were negatively correlated with the K-ARS. IVA + Plus have successfully discriminated the ADHD from NC and NOS. The z-scores of relative power of delta and theta were positively correlated with the K-ARS. The z-scores of relative power of alpha and beta were negatively correlated with the K-ARS. Conclusions : The IVA + Plus and NeuroGuide QEEG test are expected to be used as the valuable tools for diagnosing ADHD accurately.

Performance Analysis of the Propulsion System for the Combined Rotorcraft (복합형 로터항공기의 동력장치 성능해석 연구)

  • Jo, Hana;Choi, Seongman;Park, Kyungsu;Yang, Gyaebyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • Performance analysis of the turboshaft engines for combined rotorcraft was executed. A tip jet and a ducted fan aircraft were selected for combined rotorcraft application. Gasturb 12 software was used for turboshaft engine performance analysis. In the results, maximum required power for the tip jet engine is about 1,600 hp class and maximum required power for the ducted fan engine is about 1,000 hp class at the required aircraft mission. This is due to the additional power of the auxiliary compressor to get a bleed air mass flow rate for the tip jet operation. At the same time, fuel consumption of the tip jet aircraft is 2.8 times larger than ducted fan case. Therefore ducted fan type aircraft is more efficient than tip jet aircraft in terms of fuel economy.

Analysis of Energy Efficiency Design Index and Onboard Power Capacity for New Building Ships (신조선의 에너지효율설계지수와 선상 동력용량에 대한 분석)

  • Lee, D.C.;Millar Jr, Melchor M.;Nam, J.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.843-851
    • /
    • 2009
  • Much work has already been done to control and regulate the worldwide problems caused by climate change, particularly the issues on greenhouse gas (GHG) emissions. Carbon dioxide ($CO_2$), having the highest form of concentration among GHGs composed around 1.0 billion tons of emission, and comprises about 98% of the total emissions from the shipping industry. Korean trade mainly rely on the sea transportation. Korean ship tonnages that was brought about by shipbuilders all over the country, continues to grow annually due to the prevailing demands on goods or material supplies and depicting only a small part of the global maritime activity. Nowadays, new build ships coming from the Korean Shipbuilders are being optimized by hull, structure and appendages design, The operational capability of the propulsion and auxiliary machineries in its maximum capacity to achieve the highest possible efficiencies for energy and onboard power use to mitigate $CO_2$ emissions are continually being done through the help of research and development. In this paper, the energy efficiency design index and anboard power capacity of Korean new build ships have been analyzed with response to data collected by ship types, and its respective fuel consumption in relation to $CO_2$ emission results. In response to climate change convention outcome proposals, the best way for the new build ships to become energy efficient is by lowering its operational speed thru adopting the state of the art diesel propulsion engines, patronizing the best sailing practice to lower the transportation cost on the different sea trade routes also helps in $CO_2$ mitigation.