• 제목/요약/키워드: Auxiliary Cooling Water Pump

검색결과 9건 처리시간 0.028초

2단 승온 캐스케이드 히트펌프의 성능 특성에 관한 연구 (Study on the Performance of a Cascade Heat Pump with Two-stage Water Heating Process)

  • 장한별;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권4호
    • /
    • pp.27-32
    • /
    • 2016
  • It is estimated that only heating and cooling take about one third of the total energy consumption worldwide. However, the conventional heating and cooling systems have low efficiencies. Also, boilers and electric heaters that are mostly used to generate both domestic and industrial hot water are inefficient and high energy consumers. For this reason, cascade heat pumps which are known to be very energy efficient and have less environmental impact are being promoted to replace conventional heating, cooling and hot water systems. In this study, a newly designed cascade heat pump by two-stage water heating method has been experimentally investigated. By adopting the auxiliary heat exchanger, the performance of the system was increased. The performance enhancement rate of the system could be maximized by adjusting the low stage compressor speed rather than the high stage compressor speed. The performance of the system with the auxiliary heat exchanger was enhanced by 16.5%.

지열원과 수열원을 이용한 하이브리드 히트펌프 시스템의 에너지 성능 비교 분석 연구 (A Study on Comparative Analysis of Energy Performance of Hybrid Heat Pump Systems Using Ground Heat Source and Water Heat Source)

  • 박시훈;김종현;민준기
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.59-67
    • /
    • 2021
  • In this study, the performance of the single heat source system and the hybrid system was comparatively analyzed. Case 1 is a ground heat source system, and Case 2 is a water heat source system. Case 3, a hybrid system, reduced the capacity of the ground heat source and applied a water heat source as an auxiliary heat source, and Case 4 was composed of a system that applied a water heat source as an auxiliary heat source to the ground heat source system. As a result of the simulation, in case 3, energy consumption was reduced by up to 2.67% compared to ground sources for cooling. In Case 4, COP was improved by up to 10.02% compared to ground sources during cooling, and EST was calculated to be 2.42℃ lower. During heating, 0.83% was improved compared to the water heat source. At this time, the EST was calculated to be 2.25℃ higher than the water heat source.

콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석 (The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water)

  • 백남춘;정선영;윤응상;이경호
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

역지밸브 채터링 현상 해소방안 연구 (A Study on the Chattering Phenomena of a Check Valve)

  • 유기완;이준신;김태룡
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.36-41
    • /
    • 2002
  • The cause and the elimination method for the chattering phenomena were investigated in a check valve attached to the exit of an auxiliary cooling water pump in a Korean nuclear powerplant. From the site experiment and the numerical calculation, the incident angle of the disk was so small that it was not able to produce the sufficient lifting force to overcome the gravitational component of the disk weight. Moreover, it turned out that the installation position was not symmetric for the secondary vortical flow generated inside the elbow so that the flow structure had strongly unstable flow characteristics. From this study, the tapping noise and the chattering phenomena were eliminated exactly by changing the incidence angle of the valve disk and the installation position of the calve body.

화력발전소 냉각 취수로내의 와류발생 방지를 위한 구조물의 적정조건검토 (Proper Conditions of Structure to Prevent Eddy Creation in Cooling Water Intake Canal of Stream Power Plant)

  • 조진훈;천만복
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.465-472
    • /
    • 1999
  • Hydraulic model tests are performed to find economical and hdrqulically stable design of cooling water intake channel of steam power plant. The result of tests show that the standard distributiion of y-components in the chamber of CWP(circulating Water Pump) are recommended below 3.5 to maintain hydraulic stability, so that this value is considered as the design criteria. Common basin is necessary to improve the hydraulic stability of inflow, however the longer basin does not always improve the hydraulic stability , and the optimal length of basin can be found in some range. From the results the flow stability maintained the best condition when the length of basin is 7.2m. Beside the standard tests the auxiliary tests like edge , baffle, trapezoidal section and increase of pump capacity are carried out based on the optimal condition foudn in the standard tests. From the series of tests the economical and hydraulically stable design of intake channel was proposed.

  • PDF

선박용 펌프의 소개 (An Introduction of Pumps Installed for Marine Use)

  • 이상일;이영호;김유택
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.363-366
    • /
    • 2006
  • Various kinds of ships(Cargo ship, Passenger ship, Training ship, Special ship etc.) are operated to transport cargo or passengers at sea in the world. Most of the important auxiliary machinery which is installed are fluid machinery in those ships. A large percentage of fluid machinery is pumps which are classified turbo and non-turbo type. While much previous research has focused on pumps for shore use, very little is known about ship's pump. In order to develop an understanding of ship's pump, we introduce common pumps used in every ship and special pumps based on ship's type. This exploratory study lays the groundwork for further investigation of ship's pumps

  • PDF

HVAC 상실사고시 울진원전 3/4 호기의 보조급수펌프 격실 온동상승 평가 (Heat-up Calculation for the Auxiliary Feed Water Pump Room at Ulchin Units 3 and 4 for Loss of HVAC Accidents)

  • 윤철;박진희;황미정;한상훈
    • 대한기계학회논문집B
    • /
    • 제36권5호
    • /
    • pp.553-562
    • /
    • 2012
  • 난방, 환기 및 공기조절(HVAC) 기능이 상실된 사고의 경우, 보조급수를 위한 모터-구동 펌프격실의 온도상승을 전산유체역학 분석을 통해 평가하였다. 닫힌 펌프격실의 과도 계산결과, 8 시간 동안 공간-평균된 공기온도는 $60^{\circ}C$ 정도의 상승이 예상된다. 외기 온도 및 외부 온도는 이전 계산결과로부터 초기 $35^{\circ}C$에서 시작하여 서서히 증가한다고 가정하였다. 격실 문이 사고발생 후 약 2, 4, 그리고 6시간 경과 시점에서 열릴 경우, 체적-평균 격실 내가 온도는 약 $4^{\circ}C$의 즉각적인 하강이 나타나며 이후 서서히 온도가 상승하는 장기 거동을 보인다. 전산유체역학을 적용한 현재의 상세 해석결과는 이전의 집중(lumped) 모델을 사용한 보수적인 계산결과에 비해 낮은 격실온도 상승률을 예측한다.

충적대수층 계간축열 냉난방 시스템의 온실 난방 효과 (Effects of the Cooling and Heating System with Seasonal Thermal Storage in Alluvial Aquifer on Greenhouse Heating)

  • 문종필;강금춘;김형권;이태석;오성식;진병옥
    • 한국농공학회논문집
    • /
    • 제59권6호
    • /
    • pp.127-135
    • /
    • 2017
  • In this study, a cold well and a warm one with the distance of 100 m were installed in the alluvial aquifer. Groundwater used as the heat and the cold source of heat pump was designed to flow into the warm and the cold well with a diameter of 200 mm. In order to increase the heat and cold storage in aquifer, six auxiliary wells with the diameter of 50 mm and the depth of 30 m were installed at an interval of 5 m from the main well. Also, heat pump 50 RT, the thermal tank $40m^3$, and a remote control and monitoring system were installed in three single-span greenhouses ($2,100m^2$) for growing tomato in Buyeo, Chungcheongnam-do. According to the aquifer heat storage test which had been conducted from Aug. 31 to Sep. 22, 2016, warm water of $850m^3$ was found to flow into warm well. The temperature of the injected water was $30^{\circ}C$ (intake temperature : $15^{\circ}C$), and the heat of 12.8 Gcal was stored. The greenhouse heating test in winter had been conducted from Nov. 21, 2016 to Apr. 30, 2017. On Nov. 21, 2016 when heating greenhouse started, the aquifer temperature of the warm well was $18.5^{\circ}C$. The COP for heating with water source at $18.5^{\circ}C$ was 3.8. The intake water temperature of warm well was gradually lowered to the temperature of $15^{\circ}C$ on Jan. 2, 2017 and the heat pump COP was measured to be 3.2 at that time. As a result, the heat pump COP was improved by 18 %. and retrieval heat was 8 Gcal, the retrieval rate of heat stored in aquifer was estimated at 63 %.

역지 밸브 채터링 해소방안 연구 (A stydy on the chattering noise elimination of the check valve)

  • 유기완;이준신;김태룡;김경구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1848-1853
    • /
    • 2000
  • Cause and the elimination method for the chattering phenomena were investigated the check valve attached exit of the auxiliary cooling water pump at a korean nuclear powerplant. From the site experiment and numerical calculation the incident angle of the disk was so small that it was not able to produce the lifting force to overcome the component of disk weight. Moreover, it turned out that the installed position was not symmetric for the secondary vortical flow generated inside the elbow, so that the flow structure had strongly unstable flow characteristics. From this technical support, the tapping noise and the chattering phenomena were eliminated exactly by changing the incidence angle of the valve disk and installed position of the check valve.

  • PDF