• 제목/요약/키워드: Autopilot Dynamics

검색결과 45건 처리시간 0.029초

샘플링 시간에 대해 개선된 Singular Perturbation 기반 STT missile 디지털 autopilot 설계 (Design of an improved STT missile digital autopilot with respect to sampling time)

  • 정선태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.468-471
    • /
    • 1997
  • In this paper, we investigate the time-sampling effects on the digital implementation of singular perturbation based STT autopilot with excellent performance and propose a compensation method for the time-sampling effects. In digitization of analog STT autopilot, it is found that the stability margin of the fast dynamics is mostly affected to lead to rapid decrease. Under the this analysis, a composite digital controller with additional compensator for fast dynamics is proposed to improve the time-sampling effect and a simulation verifies the result.

  • PDF

Multi-Input Multi-Output Nonlinear Autopilot Design for Ship-to-Ship Missiles

  • Im Ki-Hong;Chwa Dong-Kyoung;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.255-270
    • /
    • 2006
  • In this paper, a design method of nonlinear autopilot for ship-to-ship missiles is proposed. Ship-to-ship missiles have strongly coupled dynamics through roll, yaw, and pitch channel in comparison with general STT type missiles. Thus it becomes difficult to employ previous control design method directly since we should find three different solutions for each control fin deflection and should verify the stability for more complicated dynamics. In this study, we first propose a control loop structure for roll, yaw, and pitch autopilot which can determine the required angles of all three control fins. For yaw and pitch autopilot design, missile model is reduced to a minimum phase model by applying a singular perturbation like technique to the yaw and pitch dynamics. Based on this model, a multi-input multi-output (MIMO) nonlinear autopilot is designed. And the stability is analyzed considering roll influences on dynamic couplings of yaw and pitch channel as well as the aerodynamic couplings. Some additional issues on the autopilot implementation for these coupled missile dynamics are discussed. Lastly, 6-DOF (degree of freedom) numerical simulation results are presented to verify the proposed method.

Integrated Roil-Pitch-Yaw Autopilot Design for Missiles

  • Kim, Yoon-Hwan;Won, Dae-Yeon;Kim, Tae-Hun;Tahk, Min-Jea;Jun, Byung-Eul;Lee, Jin-Ik;An, Jo-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.129-136
    • /
    • 2008
  • An roll-pitch-yaw integrated autopilot for missiles is designed for compensation of dynamics coupling. The proposed autopilot is based on the classical control technique. The gains of the proposed autopilot are optimized by using co-evolutionary augmented Lagrangian method(CEALM). Several cost functions are compared in order to find feasible control gains. For a case that a bank angle of missiles is unknown, multiple models are used in the autopilot optimization. In nonlinear simulations as well as linear simulations, the proposed autopilot provided good performances.

주파수 응답해석을 이용한 파랑조건에 따른 어선 자동 조타시스템의 성능평가지수에 관한 연구 (A Study on the Performance Index of Automatic Steering System of Fishing Boat Using Frequency Response Analysis)

  • 이경우;손경호
    • 수산해양기술연구
    • /
    • 제39권1호
    • /
    • pp.1-7
    • /
    • 2003
  • When a ship is course-keeping in the open seas, autopilot system is adapted. The design of autopilot system is very important for improvement of ship′s element research. Automatic steering system consists of autopilot device, power unit, steering gear, magnetic or gyro compass and ship dynamics. In order to evaluate automatic steering system of ships in open seas. we need to know the characteristics of each component of the system, and also to know the characteristics of disturbance to ship dynamics. In this paper, I provide evaluation method of autopilot navigation system of the fishing ship. Prediction method based on the principle of linear superposition is introduced for irregular disturbance. For the evaluation of automatic steering system of a ship, "performance index" is introduced from the viewpoint of energy saving and calculation method is frequency response analysis. Finally, I carried out calculation of sensitivity of control constants of autopilot with various conditions of ocean environments.

특이섭동 기법 기반 제어 시스템에 대한 샘플링 영향 분석 및 개선 - 특이섭동 기법 기반 STT 미사일 디지털 자동조정장치 설계에의 적용 (Analysis and Improvement of Time Sampling effects on Singular Perturbation based Control Systems - Its Aplication to Design of Singular Pertubation based STT Missible Digital Autopilot)

  • 정선태
    • 전자공학회논문지SC
    • /
    • 제37권3호
    • /
    • pp.33-43
    • /
    • 2000
  • 특이섭동 기법을 이용한 제어 시스템의 설계가 가능하기 위해서는 무엇보다도, 빠른 동력학의 안정성이 중요하다. 그런데, 제어기의 디지털 구현으로 인하여, 이 빠른 동력학의 안정도가 영향을 받을 수 있다. 본 논문은 최근의 개발된 우수한 성능의 특이섭동 기반의 STT 자동조정장치(autopilot) 설계의 경우를 들어 이러한 특이섭동 기법에 기반하여 설계된 제어 시스템에 대한 샘플링 영향을 조사하고 개선된 제어기 설계의 예를 제시하여, 특이섭동 기반 제어 시스템 에 대한 샘플링 영향 분석의 필요성 및 유효성을 밝혔다.

  • PDF

가상계측기반 실시간 영상유도 자동비행 시스템 구현 및 무인 로터기를 이용한 비행시험 (Implementation of Virtual Instrumentation based Realtime Vision Guided Autopilot System and Onboard Flight Test using Rotory UAV)

  • 이병진;윤석창;이영재;성상경
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.878-886
    • /
    • 2012
  • This paper investigates the implementation and flight test of realtime vision guided autopilot system based on virtual instrumentation platform. A graphical design process via virtual instrumentation platform is fully used for the image processing, communication between systems, vehicle dynamics control, and vision coupled guidance algorithms. A significatnt ojective of the algorithm is to achieve an environment robust autopilot despite wind and an irregular image acquisition condition. For a robust vision guided path tracking and hovering performance, the flight path guidance logic is combined in a multi conditional basis with the position estimation algorithm coupled with the vehicle attitude dynamics. An onboard flight test equipped with the developed realtime vision guided autopilot system is done using the rotary UAV system with full attitude control capability. Outdoor flight test demonstrated that the designed vision guided autopilot system succeeded in UAV's hovering on top of ground target within about several meters under geenral windy environment.

신경회로망을 이용한 자동조종장치 설계 (An application of neural network to autopilot design)

  • 유재종;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.619-623
    • /
    • 1993
  • In this paper, a neural network is appled to design a lateral autopilot for airplanes. Linearized lateral dynamics is used in training the neural network controller and verifying the performance as well. To train the neural network, back propagation algorithm is used. In this training, no information about the dynamics to be controlled except sign and rough magnitude of control derivatives is needed. It is shown by computer simulations that the performance and stability margin are satisfactory.

  • PDF

비선형 미사일 제어에서의 핀 구동기 동역학 영향을 보상하는 새로운 유사특이섭동기법 (A Singular Perturbation-like Method to Compensate the Effect of Fin Actuator Dynamics in Nonlinear Missile Control)

  • 홍진우;염준형;송성호;하인중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.219-221
    • /
    • 2006
  • The recently developed autopilot controller can make the input-output (I/O) dynamic characteristics of the nonlinear missile dynamics linear and independent of flight conditions. However, significant fin actuator dynamics can degenerate the I/O dynamic performance of the overall system. In this paper, we propose a singular perturbation-like method to compensate the effect of significant fin actuator dynamics in nonlinear missile control. The proposed compensation method does not require the time derivatives of fin angles but can maintain the linear I/O dynamic characteristics provided by the recently developed autopilot controller.

  • PDF

Dynamics Analysis of a Small Training Boat ant Its Optimal Control

  • Nakatani, Toshihiko;End, Makoto;Yamamoto, Keiichiro;Kanda, Taishi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.342-345
    • /
    • 2005
  • This paper describes dynamics analysis of a small training boat and a new type of ship's autopilot not only to keep her course but also to reduce her roll motion. Firstly, statistical analysis through multi-variate auto regressive model is carried out using the real data collected from the sea trial on an actual small training boat Sazanami after the navigational system of the boat was upgraded. It is shown that the roll motion is strongly influenced by the rudder motion and it is suggested that there is a possibility of reducing the roll motion by controlling the rudder order properly. Based on this observation, a new type of ship's autopilot that takes the roll motion into account is designed using the muti-variate modern control theory. Lastly, digital simulations by white noise are carried out in order to evaluate the proposed system and a typical result is demonstrated. As results of simulations, the proposed autopilot had good performance compared with the original data.

  • PDF

Missile Autopilot Design for Agile Turn Control During Boost-Phase

  • Ryu, Sun-Mee;Won, Dae-Yeon;Lee, Chang-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권4호
    • /
    • pp.365-370
    • /
    • 2011
  • This paper presents the air-to-air missile autopilot design for a $180^{\circ}$ heading reversal maneuver during boost-phase. The missile's dynamics are linearized at a set of operating points for which angle of attack controllers are designed to cover an extended flight envelope. Then, angle of attack controllers are designed for this set of points, utilizing a pole-placement approach. The controllers' gains in the proposed configuration are computed from aerodynamic coefficients and design parameters in order to satisfy designer-chosen criteria. These design parameters are the closed-loop frequency, damping ratio, and time constant; these represent the characteristics of the control system. To cope with highly nonlinear and rapidly time varying dynamics during boost-phase, the global gain-scheduled controller is obtained by interpolating the controllers' gains over variations of the angle of attack, Mach number, and center of gravity. Simulation results show that the proposed autopilot design provides satisfactory performance and possesses good [ed: or "sufficient" or "excellent"] capabilities.