• 제목/요약/키워드: Autophagy inhibitor

검색결과 88건 처리시간 0.034초

Aldose Reductase Inhibitor Fidarestat as a Promising Drug Targeting Autophagy in Colorectal Carcinoma: a Pilot Study

  • Pandey, Saumya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.4981-4985
    • /
    • 2015
  • Background: Colorectal cancer (CRC) is a leading cause of morbidity and mortality worldwide. Targeting autophagic cell death is emerging as a novel strategy in cancer chemotherapy. Aldose reductase (AR) catalyzes the rate limiting step of the polyol pathway of glucose metabolism; besides reducing glucose to sorbitol, AR reduces lipid peroxidation-derived aldehydes and their glutathione conjugates. A complex interplay between autophagic cell death and/or survival may in turn govern tumor metastasis. This exploratory study aimed to investigate the potential role of AR inhibition using a novel inhibitor Fidarestat in the regulation of autophagy in CRC cells. Materials and Methods: For glucose depletion (GD), HT-29 and SW480 CRC cells were rinsed with glucose-free RPMI-1640, followed by incubation in GD medium +/- Fidarestat ($10{\mu}M$). Proteins were extracted by a RIPA-method followed by Western blotting ($35-50{\mu}g$ of protein; n=3). Results: Autophagic regulatory markers, primarily, microtubule associated protein light chain (LC) 3, autophagy-related gene (ATG) 5, ATG 7 and Beclin-1 were expressed in CRC cells; glyceraldehyde-3 phosphate dehydrogenase (GAPDH) was used as an internal reference. LC3 II (14 kDa) expression was relatively high compared to LC3A/B I levels in both CRC cell lines, suggesting occurrence of autophagy. Expression of non-autophagic markers, high mobility group box (HMG)-1 and Bcl-2, was comparatively low. Conclusions: GD +/- ARI induced autophagy in HT-29 and SW-480 cells, thereby implicating Fidarestat as a promising therapeutic agent for colorectal cancer; future studies with more potent ARIs are warranted to fully dissect the molecular regulatory networks for autophagy in colorectal carcinoma.

Dual Inhibition of PI3K/Akt/mTOR Pathway and Role of Autophagy in Non-Small Cell Lung Cancer Cells

  • Jeong, Eun-Hui;Choi, Hyeong-Sim;Lee, Tae-Gul;Kim, Hye-Ryoun;Kim, Cheol-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • 제72권4호
    • /
    • pp.343-351
    • /
    • 2012
  • Background: The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling axis has emerged as a novel target for cancer therapy. Agents that inhibit this pathway are currently under development for lung cancer treatment. In the present study, we have tested whether dual inhibition of PI3K/Akt/mTOR signaling can lead to enahnced antitumor effects. We have also examined the role of autophagy during this process. Methods: We analyzed the combination effect of the mTOR inhibitor, temsirolimus, and the Akt inhibitor, GSK690693, on the survival of NCI-H460 and A549 non-small cell lung cancer cells. Cell proliferation was determined by MTT assay and apoptosis induction was evaluated by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Autophagy induction was also evaluated by acridine orange staining. Changes of apoptosis or autophagy-related proteins were evaluated by western blot analysis. Results: Combination treatment with temsirolimus and GSK690693 caused synergistically increased cell death in NCI-H460 and A549 cells. This was attributable to increased induction of apoptosis. Caspase 3 activation and poly(ADP-ribose) polymerase cleavage accompanied these findings. Autophagy also increased and inhibition of autophagy resulted in increased cell death, suggesting its cytoprotective role during this process. Conclusion: Taken together, our results suggest that the combination of temsirolimus and GSK690693 could be a novel strategy for lung cancer therapy. Inhibition of autophagy could also be a promising method of enhancing the combination effect of these drugs.

A Revised Assay for Monitoring Autophagic Flux in Arabidopsis thaliana Reveals Involvement of AUTOPHAGY-RELATED9 in Autophagy

  • Shin, Kwang Deok;Lee, Han Nim;Chung, Taijoon
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.399-405
    • /
    • 2014
  • Autophagy targets cytoplasmic cargo to a lytic compartment for degradation. Autophagy-related (Atg) proteins, including the transmembrane protein Atg9, are involved in different steps of autophagy in yeast and mammalian cells. Functional classification of core Atg proteins in plants has not been clearly confirmed, partly because of the limited availability of reliable assays for monitoring autophagic flux. By using proUBQ10-GFP-ATG8a as an autophagic marker, we showed that autophagic flux is reduced but not completely compromised in Arabidopsis thaliana atg9 mutants. In contrast, we confirmed full inhibition of auto-phagic flux in atg7 and that the difference in autophagy was consistent with the differences in mutant phenotypes such as hypersensitivity to nutrient stress and selective autophagy. Autophagic flux is also reduced by an inhibitor of phosphatidylinositol kinase. Our data indicated that atg9 is phenotypically distinct from atg7 and atg2 in Arabidopsis, and we proposed that ATG9 and phosphatidylinositol kinase activity contribute to efficient autophagy in Arabidopsis.

Fluoxetine Simultaneously Induces Both Apoptosis and Autophagy in Human Gastric Adenocarcinoma Cells

  • Po, Wah Wah;Thein, Wynn;Khin, Phyu Phyu;Khing, Tin Myo;Han, Khin Wah Wah;Park, Chan Hee;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • 제28권2호
    • /
    • pp.202-210
    • /
    • 2020
  • Fluoxetine is used widely as an antidepressant for the treatment of cancer-related depression, but has been reported to also have anti-cancer activity. In this study, we investigated the cytotoxicity of fluoxetine to human gastric adenocarcinoma cells; as shown by the MTT assay, fluoxetine induced cell death. Subsequently, cells were treated with 10 or 20 µM fluoxetine for 24 h and analyzed. Apoptosis was confirmed by the increased number of early apoptotic cells, shown by Annexin V- propidium iodide staining. Nuclear condensation was visualized by DAPI staining. A significant increase in the expression of cleaved PARP was observed by western blotting. The pan-caspase inhibitor Z-VAD-FMK was used to detect the extent of caspase-dependent cell death. The induction of autophagy was determined by the formation of acidic vesicular organelles (AVOs), which was visualized by acridine orange staining, and the increased expression of autophagy markers, such as LC3B, Beclin 1, and p62/SQSTM 1, observed by western blotting. The expression of upstream proteins, such as p-Akt and p-mTOR, were decreased. Autophagic degradation was evaluated by using bafilomycin, an inhibitor of late-stage autophagy. Bafilomycin did not significantly enhance LC3B expression induced by fluoxetine, which suggested autophagic degradation was impaired. In addition, the co-administration of the autophagy inhibitor 3-methyladenine and fluoxetine significantly increased fluoxetine-induced apoptosis, with decreased p-Akt and markedly increased death receptor 4 and 5 expression. Our results suggested that fluoxetine simultaneously induced both protective autophagy and apoptosis and that the inhibition of autophagy enhanced fluoxetine-induced apoptosis through increased death receptor expression.

Autophagy Inhibition with Monensin Enhances Cell Cycle Arrest and Apoptosis Induced by mTOR or Epidermal Growth Factor Receptor Inhibitors in Lung Cancer Cells

  • Choi, Hyeong Sim;Jeong, Eun-Hui;Lee, Tae-Gul;Kim, Seo Yun;Kim, Hye-Ryoun;Kim, Cheol Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • 제75권1호
    • /
    • pp.9-17
    • /
    • 2013
  • Background: In cancer cells, autophagy is generally induced as a pro-survival mechanism in response to treatment-associated genotoxic and metabolic stress. Thus, concurrent autophagy inhibition can be expected to have a synergistic effect with chemotherapy on cancer cell death. Monensin, a polyether antibiotic, is known as an autophagy inhibitor, which interferes with the fusion of autophagosome and lysosome. There have been a few reports of its effect in combination with anticancer drugs. We performed this study to investigate whether erlotinib, an epidermal growth factor receptor inhibitor, or rapamycin, an mammalian target of rapamycin (mTOR) inhibitor, is effective in combination therapy with monensin in non-small cell lung cancer cells. Methods: NCI-H1299 cells were treated with rapamycin or erlotinib, with or without monensin pretreatment, and then subjected to growth inhibition assay, apoptosis analysis by flow cytometry, and cell cycle analysis on the basis of the DNA contents histogram. Finally, a Western blot analysis was done to examine the changes of proteins related to apoptosis and cell cycle control. Results: Monensin synergistically increases growth inhibition and apoptosis induced by rapamycin or erlotinib. The number of cells in the sub-$G_1$ phase increases noticeably after the combination treatment. Increase of proapoptotic proteins, including bax, cleaved caspase 3, and cleaved poly(ADP-ribose) polymerase, and decrease of anti-apoptotic proteins, bcl-2 and bcl-xL, are augmented by the combination treatment with monensin. The promoters of cell cycle progression, notch3 and skp2, decrease and p21, a cyclin-dependent kinase inhibitor, accumulates within the cell during this process. Conclusion: Our findings suggest that concurrent autophagy inhibition could have a role in lung cancer treatment.

Rapamycin Influences the Efficiency of In vitro Fertilization and Development in the Mouse: A Role for Autophagic Activation

  • Lee, Geun-Kyung;Shin, Hyejin;Lim, Hyunjung Jade
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권8호
    • /
    • pp.1102-1110
    • /
    • 2016
  • The mammalian target of rapamycin (mTOR) regulates cellular processes such as cell growth, metabolism, transcription, translation, and autophagy. Rapamycin is a selective inhibitor of mTOR, and induces autophagy in various systems. Autophagy contributes to clearance and recycling of macromolecules and organelles in response to stress. We previously reported that vitrified-warmed mouse oocytes show acute increases in autophagy during warming, and suggested that it is a natural response to cold stress. In this follow-up study, we examined whether the modulation of autophagy influences survival, fertilization, and developmental rates of vitrified-warmed mouse oocytes. We used rapamycin to enhance autophagy in metaphase II (MII) oocytes before and after vitrification. The oocytes were then subjected to in vitro fertilization (IVF). The fertilization and developmental rates of vitrified-warmed oocytes after rapamycin treatment were significantly lower than those for control groups. Modulation of autophagy with rapamycin treatment shows that rapamycin-induced autophagy exerts a negative influence on fertilization and development of vitrified-warmed oocytes.

Is Autophagy a Prerequisite for Steroidogenesis in Leydig Cells?

  • Ji-Eun Park;Yoon-Jae Kim;Jong-Min Kim
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권3호
    • /
    • pp.149-157
    • /
    • 2023
  • We investigated the involvement of autophagy with steroidogenesis in testicular Leydig cells. Human chorionic gonadotropin (hCG)-stimulated T production in Leydig cells was not remarkably altered in the presence of an autophagy inhibitor 3-methyladenine (3-MA). Although pretreatment with 3-MA demonstrated a tendency to decrease hCG-induced T production, the differences were significant only at a higher time point of 24 h following hCG. Microtubule associated protein light chain 3 (LC3)-II was detectable in the control cells in all the experiments. The hCG-induced increase in steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleave (P450scc) protein levels were not significantly altered by 3-MA. Leydig cells isolated from immature rat testes 12 h following hCG treatment showed relatively increased levels of LC3-II protein compared to the control group. Furthermore, LC3-II levels shown in these cells reached almost the identical to those from normal adult testes. However, LC3-II protein levels were almost comparable or even slightly lower than the controls at 48 h following hCG. Expression of StAR and P450scc was upregulated at both 12 and 48 h after hCG. We also used MA-10 cells, the mouse Leydig cell line, in this experiment. When dibutyryl cyclic-AMP was treated with MA-10 cells, P4 levels were significantly increased in the cell culture medium. However, P4 levels tended to decrease in the presence of 3-MA, but the difference was not statistically significant. This was consistent with the results of the rat Leydig cell experiments. Together, we believe that although autophagy participates in steroidogenesis and enhances steroidogenic efficacy of Leydig cells, it may not be a decisive cellular process for steroidogenesis, specifically in the mature Leydig cells.

Pan-Caspase Inhibitor zVAD Induces Necroptotic and Autophagic Cell Death in TLR3/4-Stimulated Macrophages

  • Chen, Yuan-Shen;Chuang, Wei-Chu;Kung, Hsiu-Ni;Cheng, Ching-Yuan;Huang, Duen-Yi;Sekar, Ponarulselvam;Lin, Wan-Wan
    • Molecules and Cells
    • /
    • 제45권4호
    • /
    • pp.257-272
    • /
    • 2022
  • In addition to inducing apoptosis, caspase inhibition contributes to necroptosis and/or autophagy depending on the cell type and cellular context. In macrophages, necroptosis can be induced by co-treatment with Toll-like receptor (TLR) ligands (lipopolysaccharide [LPS] for TLR4 and polyinosinic-polycytidylic acid [poly I:C] for TLR3) and a cell-permeable pan-caspase inhibitor zVAD. Here, we elucidated the signaling pathways and molecular mechanisms of cell death. We showed that LPS/zVAD- and poly I:C/zVAD-induced cell death in bone marrow-derived macrophages (BMDMs) was inhibited by receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 and autophagy inhibitor 3-methyladenine. Electron microscopic images displayed autophagosome/autolysosomes, and immunoblotting data revealed increased LC3II expression. Although zVAD did not affect LPS- or poly I:C-induced activation of IKK, JNK, and p38, it enhanced IRF3 and STAT1 activation as well as type I interferon (IFN) expression. In addition, zVAD inhibited ERK and Akt phosphorylation induced by LPS and poly I:C. Of note, zVAD-induced enhancement of the IRF3/IFN/STAT1 axis was abolished by necrostatin-1, while zVAD-induced inhibition of ERK and Akt was not. Our data further support the involvement of autocrine IFNs action in reactive oxygen species (ROS)-dependent necroptosis, LPS/zVAD-elicited ROS production was inhibited by necrostatin-1, neutralizing antibody of IFN receptor (IFNR) and JAK inhibitor AZD1480. Accordingly, both cell death and ROS production induced by TLR ligands plus zVAD were abrogated in STAT1 knockout macrophages. We conclude that enhanced TRIF-RIP1-dependent autocrine action of IFNβ, rather than inhibition of ERK or Akt, is involved in TLRs/zVAD-induced autophagic and necroptotic cell death via the JAK/STAT1/ROS pathway.

Over-Expression of Beclin-1 Facilitates Acquired Resistance to Histone Deacetylase Inhibitor-Induced Apoptosis

  • Wang, Shi-Miao;Li, Xiao-Hui;Xiu, Zhi-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7913-7917
    • /
    • 2014
  • Apoptotic cell death plays a predominant role in histone deacetylase (HDAC) inhibitor-induced cytotoxicity. Nuclear morphological changes and activation of apoptotic executors are involved in CTS203-induced cell death. However, emerging issues of HDAC inhibitor-resistance have been observed in patients. Herein, MCF-7 cells were continuously exposed to CTS203 until the derived cells could proliferate normally in its presence. The newly obtained CTS203-resistant cells were nominated as MCF-7/203R. Compared to MCF-7 original cells, the MCF-7/203R cells were less sensitive to CTS203-induced apoptosis, with a minimal 6-fold higher $IC_{50}$ value. In contrast, the expression of Beclin-1 was dramatically up-regulated, positively correlated to the acquisition of CTS203-resistance. Our results revealed the participation of autophagy in acquired HDAC inhibitor-resistance and further identified Beclin-1 as a promising target for anti-drug resistance.

Particulate Matter-Induced Aryl Hydrocarbon Receptor Regulates Autophagy in Keratinocytes

  • Jang, Hye sung;Lee, Ji eun;Myung, Cheol hwan;Park, Jong il;Jo, Chan song;Hwang, Jae Sung
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.570-576
    • /
    • 2019
  • Particulate matter (PM), which refers to the mixture of particles present in the air, can have harmful effects. Damage to cells by PM, including disruption of organelles and proteins, can trigger autophagy, and the relationship between autophagy and PM has been well studied. However, the cellular regulators of PM-induced autophagy have not been well characterized, especially in keratinocytes. The Aryl Hydrocarbon Receptor (AhR) is expressed in the epidermis and is activated by PM. In this study, we investigated the role of the AhR in PM-induced autophagy in HaCaT cells. Our results showed that PM led to AhR activation in keratinocytes. Activation of the AhR-target gene CYP1A1 by PM was reduced by co-treatment with ${\alpha}$-naphthoflavone (${\alpha}-NF$), an AhR inhibitor. We also evaluated activation of the autophagy pathway in PM-treated keratinocytes. In HaCaT cells, treatment with PM treatment led to the induction of microtubules-associated proteins light chain 3 (LC3) and p62/SQSTM1, which are essential components of the autophagy pathway. To study the role of the AhR in mediating PM-induced autophagy, we treated cells with ${\alpha}-NF$ or used an siRNA against AhR. Expression of LC3-II induced by PM was decreased in a dose dependent manner by ${\alpha}-NF$. Furthermore, knockdown of AhR with siAhR diminished PM-induced expression of LC3-II and p62. Together, these results suggest that inhibition of the AhR decreases PM-induced autophagy. We confirmed these results using the autophagy-inhibitors BAF and 3-MA. Taken together, our results indicate that exposure to PM induces autophagy via the AhR in HaCaT keratinocytes.