• Title/Summary/Keyword: Autonomy Robot

Search Result 35, Processing Time 0.029 seconds

Operator Capacity Assessment Method for the Supervisory Control of Unmanned Military Vehicle (군사로봇의 감시제어에서 운용자 역량 평가 방법에 관한 연구)

  • Choi, Sang-Yeong;Yang, Ji-Hyeon
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.94-106
    • /
    • 2017
  • Unmanned military vehicles (UMVs) will be increasingly applied to the various military operations. These UMVs are most commonly characterized as dealing with "4D" task - dull, dirty, dangerous and difficult with automations. Although most of the UMVs are designed to a high degree of autonomy, the human operator will still intervene in the robots operation, and tele-operate them to achieve his or her mission. Thus, operator capacity, along with robot autonomy and user interface, is one of the important design factors in the research and development of the UMVs. In this paper, we propose the method to assess the operator capacity of the UMVs. The method is comprised of the 6 steps (problem, assumption, goal function identification, operator task analysis, task modeling & simulation, results and assessment), and herein colored Petri-nets are used for the modeling and simulation. Further, an illustrative example is described at the end of this paper.

Path Planning and Obstacle Avoidance for Mobile Robot with Vision System Using Fuzzy Rules (비전과 퍼지 규칙을 이용한 이동로봇의 경로계획과 장애물회피)

  • 배봉규;채양범;이원창;강근택
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.470-476
    • /
    • 2001
  • This paper presents a new algorithm of path planning and obstacle avoidance for autonomous mobile robots with vision system that is working in unknown environments. Distance variation technique is used in path planning to approach the target and avoid obstacles in work space as well . In this approach, the Sobel operator is employed to detect edges of obstacles and the distances between the mobile robot and the obstacles are measured. Fuzzy rules are used for trajectory planning and obstacle avoidance to improve the autonomy of mobile robots. It is shown by computer simulation that the proposed algorithm is superior to the vector field approach which sometimes traps the mobile robot into some local obstacles. An autonomous mobile robot with single vision is developed for experiments. We also show that the developed mobile robot with the proposed algorithm is navigating very well in complex unknown environments.

  • PDF

Design of Behavior-based Soccer Robot (행위 기반 제어에 의한 축구로봇 설계)

  • Kim, Jong-Woo;Sung, Young-Hwe;Choi, Han-Go
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.365-368
    • /
    • 2005
  • This paper describes the implementation of autonomy in the motion of a small size human robot. Traditional modeling of environment and concept of moving planning have limitations to adapt the change of environment and to implement in real-time operation. To overcome these limitations, we designed a behavior-based control algorithm and applied to robot soccer. Based on experiment, we verify that the behavior-based control algorithm works well in the change of environment.

  • PDF

Obstacle Avoidance and Path Planning for a Mobile Robot Using Vision System and Fuzzy Rule (비전과 퍼지규칙을 이용한 이동로봇의 경로계획과 장애물회피)

  • Bae, Bong-Kyu;Lee, Won-Chang;Kang, Geun-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2769-2771
    • /
    • 2000
  • In this paper we propose new algorithms of path planning and obstacle avoidance for an autonomous mobile robot with vision system. Distance variation is included in path planning to approach the target point and avoid obstacles well. The fuzzy rules are also applied to both trajectory planning and obstacle avoidance to improve the autonomy of mobile robot. It is shown by computer simulation that the proposed algorithm is working well.

  • PDF

A Modified Multiple Depth First Search Algorithm for Grid Mapping Using Mini-Robots Khepera

  • El-Ghoul, Sally;Hussein, Ashraf S.;Wahab, M. S. Abdel;Witkowski, U.;Ruckert, U.
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.321-338
    • /
    • 2008
  • This paper presents a Modified Multiple Depth First Search algorithm for the exploration of the indoor environments occupied with obstacles in random distribution. The proposed algorithm was designed and implemented to employ one or a team of Khepera II mini robots for the exploration process. In case of multi-robots, the BlueCore2 External Bluetooth module was used to establish wireless networks with one master robot and one up to three slaves. Messages are sent and received via the module's Universal Asynchronous Receiver/Transmitter (UART) interface. Real exploration experiments were performed using locally developed teleworkbench with various autonomy features. In addition, computer simulation tool was also developed to simulate the exploration experiments with one master robot and one up to ten slaves. Computer simulations were in good agreement with the real experiments for the considered cases of one to one up to three networks. Results of the MMDFS for single robot exhibited 46% reduction in the needed number of steps for exploring environments with obstacles in comparison with other algorithms, namely the Ants algorithm and the original MDFS algorithm. This reduction reaches 71% whenever exploring open areas. Finally, results performed using multi-robots exhibited more reduction in the needed number of exploration steps.

Collision-free local planner for unknown subterranean navigation

  • Jung, Sunggoo;Lee, Hanseob;Shim, David Hyunchul;Agha-mohammadi, Ali-akbar
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.580-593
    • /
    • 2021
  • When operating in confined spaces or near obstacles, collision-free path planning is an essential requirement for autonomous exploration in unknown environments. This study presents an autonomous exploration technique using a carefully designed collision-free local planner. Using LiDAR range measurements, a local end-point selection method is designed, and the path is generated from the current position to the selected end-point. The generated path showed the consistent collision-free path in real-time by adopting the Euclidean signed distance field-based grid-search method. The results consistently demonstrated the safety and reliability of the proposed path-planning method. Real-world experiments are conducted in three different mines, demonstrating successful autonomous exploration flights in environment with various structural conditions. The results showed the high capability of the proposed flight autonomy framework for lightweight aerial robot systems. In addition, our drone performed an autonomous mission in the tunnel circuit competition (Phase 1) of the DARPA Subterranean Challenge.

A Study on a Geometrical Analysis for the Manual Mode of an Advanced Teleoperator System (지적 원격조작시스템의 수동모드 개선을 위한 기하학적 해석에 관한 연구)

  • Lee, Sun-Yo;Kim, Chang-Dae;Park, Se-Gwon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.31-44
    • /
    • 1988
  • If an error occurs in the automatic mode when the advanced teleoperator system performs a task in hostile environment then the automatic mode changes into the manual mode. The operation by the control program and the operation by a human recover the error in the manual mode. The system resumes the automatic mode and continues the given task. It is necessary to improve the manual mode in order to make the best use of a man-robot system, as a part of the human interface technique. Therefore, the error recovery task is performed by combining the operation by the control program representing autonomy of a robot and the operation by a human representing versatility of a human operator effectively in the view point of human factors engineering. The geometric inverse kinematics is used for the calculation of the robot joint values in the operation by the control program. The singularity operation error and the parameter operation error often occur in this procedure. These two operation errors increase the movement time of the robot and the coordinate reading time, during the error recovery task. A singularity algorithm, parameter algorithm and fuzzy control are studied so as to remove the disadvantages of geometric inverse kinematics. And the geometric straight line motion is studied so as to improve the disadvantages of the operation by a human.

  • PDF

Implementation of Underwater Entertainment Robots Based on Ubiquitous Sensor Networks (유비쿼터스 센서 네트워크에 기반한 엔터테인먼트용 수중 로봇의 구현)

  • Shin, Dae-Jung;Na, Seung-You;Kim, Jin-Young;Song, Min-Gyu
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.255-262
    • /
    • 2009
  • We present an autonomous entertainment dolphin robot system based on ubiquitous sensor networks(USN). Generally, It is impossible to apply to USN and GPS in underwater bio-mimetic robots. But An Entertainment dolphin robot which presented in this paper operates on the water not underwater. Navigation of the underwater robot in a given area is based on GPS data and the acquired position information from deployed USN motes with emphasis on user interaction. Body structures, sensors and actuators, governing microcontroller boards, and swimming and interaction features are described for a typical entertainment dolphin robot. Actions of mouth-opening, tail splash or water blow through a spout hole are typical responses of interaction when touch sensors on the body detect users' demand. Dolphin robots should turn towards people who demand to interact with them, while swimming autonomously. The functions that are relevant to human-robot interaction as well as robot movement such as path control, obstacle detection and avoidance are managed by microcontrollers on the robot for autonomy. Distance errors are calibrated periodically by the known position data of the deployed USN motes.

Design of a Chain-Type Modular Robot (체인형 모둘러 로봇의 설계)

  • Lee, Bo-Hee;Lee, Sang-Kyung;Kong, Jung-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.674-682
    • /
    • 2009
  • The modular robot is one which was developed to get over limit of the space movement for the mobile robot. The chain type robot in particular is connected by series each other and this form expression method is simple and easy to really make a docking method efficiently. However, the related studies were focused on the movement that used to be combination, and the movement of a cell independent mainly does not consist and have a problem to dock only in a direction, not to be connected with all directions. Therefore, we suggested a modular structure for quick, independent movement to solve such a problem and had own autonomy. In addition, we are intended to get some effectiveness for connection mechanism using one locking motor. In this paper, we dealt with the design for the mechanical and electrical points and docking algorithm including communication method. All of the structure is verified with real action experiment through the shape expressions of various application platform.

Robotics in Construction: State-of-Art of On-site Advanced Devices

  • Balzan, Alberto;Aparicio, Claudia Cabrera;Trabucco, Dario
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.1
    • /
    • pp.95-104
    • /
    • 2020
  • Recently, robotic technologies have significantly improved, bringing considerable enhancements in many sectors; the main objective of this paper is to figure out if these innovations have also involved the building industry. To achieve this purpose, it has been considered crucial to first reshape and clarify some concepts, incorporating a much more flexible understanding of the term "robot", as well as the formulation of its future potential. Subsequently, it has been carried out an analysis of the various advanced devices that are currently available to be employed in the construction processes; the review includes a thorough classification of construction robots, divided into 18 families reflecting their purpose of use, and a dissection based on the term used to define them. The attention has been focused on the most updated and recent robots and, in their absence, on the most advanced machines prevailing. This operation has been achieved taking into account the development history of construction robots, as well as the analyses and classifications previously conducted, reconsidering them according to the just mentioned reflections. Furthermore, an in-depth exploration of the exoskeletons, as well as on a sophisticated robot recently developed by Schindler Group has been executed.