• 제목/요약/키워드: Autonomous vehicle simulation

검색결과 286건 처리시간 0.036초

Advanced controller design for AUV based on adaptive dynamic programming

  • Chen, Tim;Khurram, Safiullahand;Zoungrana, Joelli;Pandey, Lallit;Chen, J.C.Y.
    • Advances in Computational Design
    • /
    • 제5권3호
    • /
    • pp.233-260
    • /
    • 2020
  • The main purpose to introduce model based controller in proposed control technique is to provide better and fast learning of the floating dynamics by means of fuzzy logic controller and also cancelling effect of nonlinear terms of the system. An iterative adaptive dynamic programming algorithm is proposed to deal with the optimal trajectory-tracking control problems for autonomous underwater vehicle (AUV). The optimal tracking control problem is converted into an optimal regulation problem by system transformation. Then the optimal regulation problem is solved by the policy iteration adaptive dynamic programming algorithm. Finally, simulation example is given to show the performance of the iterative adaptive dynamic programming algorithm.

LabVIEW를 이용한 이동로봇 위치제어를 위한 PI제어기 구현 (An Implementation of PI Controller for the Position Control of Mobile Robot Using LabVIEW)

  • 박영환;이재경
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1241-1246
    • /
    • 2008
  • The dynamics of mobile robot is nonlinear. To cope with this nonlinearity, many advanced control schemes have been proposed recently. Generally, the advanced control schemes are complicated and not good for the practical real-time control when they are implemented as control programs. So, in this paper, a relatively simple PI controller is proposed and applied to the position control of mobile robot with the adoption of reference trajectory calculation method used for the AUV(Autonomous Underwater Vehicle) control. The proposed PI controller is programmed using LabVIEW which is popular for its graphical programming characteristics. The simulation and experimental results show the feasibility and effectiveness of the proposed PI controller.

상태변수 추정을 이용한 김발형 관성항법시스템의 교정기법에 대한 연구 (Calibration of gimballed inertial navigation systems using state estimation)

  • 김갑진;송택렬
    • 제어로봇시스템학회논문지
    • /
    • 제4권1호
    • /
    • pp.62-67
    • /
    • 1998
  • Gimballed Inertial Navigation Systems(GINS) are sophisticated autonomous electro-mechanical systems which supply the position, velocity and attitude of the vehicle on which they are mounted. In order to maintain accuracy of outputs, the GINS are required to regularly calibrate senior errors. However, existing calibration methods take up a long time due to multiposition alignments needed to increase accuracy. A particular system formulation for calibration of a GINS is proposed to enhance system observability and thus to expedite calibration procedure. Performance of the proposed calibration method is compared with existing methods such as Schuler test and muliposition alignment. Simulation studies show the proposed system formulation associated with a suggested suboptimal filter is accurate as well as efficient in error identification essential to GINS calibration.

  • PDF

Intelligent Attitude Control of an Unmanned Helicopter

  • An, Seong-Jun;Park, Bum-Jin;Suk, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.265-270
    • /
    • 2005
  • This paper presents a new attitude stabilization and control of an unmanned helicopter based on neural network compensation. A systematic derivation on the dynamics of an unmanned small-scale helicopter is performed. Combined rotor-fuselage-tail dynamics is derived in body-fixed reference frame with its origin at the C.G. of the helicopter. And the resulting nonlinear equation of motion consists of 6-DOF air vehicle dynamics as well as the rotor flapping and engine torque equations. A simulation model was modified using the existing simulator for an unmanned helicopter dynamic model, which reflects the unmanned test helicopter(CNUHELI). The dynamic response of the refined model was compared with the flight test data. It can be shown that a good coincidence was accomplished between the real unmanned helicopter system and the mathematical model. This dynamic model was linearized for classical controller design using small perturbation method. A Neuro-PD control system was designed for both longitudinal and lateral flight modes, and the results were compared with the PD-only control response. Simulation results show that the proposed Neuro-PD control system demonstrates better performance.

  • PDF

Three-dimensional Guidance Law for Formation Flight of UAV

  • Min, Byoung-Mun;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.463-467
    • /
    • 2005
  • In this paper, the guidance law applicable to formation flight of UAV in three-dimensional space is proposed. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the guidance commands of the wingmen. The propose guidance law is easily integrated into the existing flight control system because the guidance commands are given in terms of velocity, flight path angle and heading angle to form the prescribed formation. In this guidance law, communication is required between the leader and the wingmen to achieve autonomous formation. The wingmen are only required the current position and velocity information of the leader vehicle. The performance of the proposed guidance law is evaluated using the complete nonlinear 6-DOF aircraft system. This system is integrated with nonlinear aerodynamic and engine characteristics, actuator servo limitations for control surfaces, various stability and control augmentation system, and autopilots. From the nonlinear simulation results, the new guidance law for formation flight shows that the vehicles involved in formation flight are perfectly formed the prescribed formation satisfying the several constraints such as final velocity, flight path angle, and heading angle.

  • PDF

보간법을 이용한 무인잠수정 3차원 운동의 효율적인 가시화 기법 (An Efficient 3D Visualization Method of AUV Motion Using Interpolation of Position Data)

  • 이희숙;전봉환;김기훈;김상봉
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.327-330
    • /
    • 2006
  • With the increasing requirements for the survey and development of the ocean, the demands on the of AUV(Autonomous Underwater Vehicle) technologies have been increased. Reconstruction and replay of the AUV motion on the basis of the data stored during the execution of mission, can help the development of control strategies for AUVs such as mission planning and control algorithms. While an AUV cruises for her mission, her attitude and position data are is recorded. The data can be used for visualization of the motion in off-line. However, because most of the position data gathered from acoustic sensors have long time-interval and include intermittent faulty signal, the replayed motion by the graphic simulator can not demonstrate the motion as a smooth movie. In this paper, interpolation methods are surveyed to reconstruct the AUV position data. Then, an efficient 3D visualization method for AUV motion using the interpolation method is proposed. Simulation results arc also included to verify the proposed method.

  • PDF

자율무인잠수정 이심이의 선수각 및 심도 제어기 설계와 외란 특성 분석 (Design on Yawing And Depth Controller And Analysis of Disturbance Characteristic about the AUV ISiMI)

  • 마성진;전봉환;이판묵;김상봉
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.351-354
    • /
    • 2006
  • In underwater environment, the control of AUV is difficult, because of the existence of parameter uncertainties and disturbances as well as highly nonlinear and coupled system dynamics. The requirement for the simple and robust controller which works satisfactorily in those dynamical uncertainties, call for a design using the PD or sliding mode controller. The PD controller is very popular controller in the industrial field and the sliding mode controller has been used successfully for the AUV controller design. In this paper, the two controllers arc designed for ISiMI(Integrated Submergible Intelligent Mission Implementation) AUV and the performances are compared by numerical simulation under the modeling uncertainty and disturbances. The design process of PD and sliding mode controller for ISiMI AUV and simulation results are included to compare the performances of the two controllers.

  • PDF

도시부 도로 내 자율주행차량의 교통안전표지 정보 인지 시점에 따른 교통류 분석 (Analysis of Traffic Flow Based on Autonomous Vehicles' Perception of Traffic Safety Signs in Urban Roads)

  • 김종호;장혁준;한음;고은정
    • 한국ITS학회 논문지
    • /
    • 제22권5호
    • /
    • pp.148-162
    • /
    • 2023
  • 본 연구는 교통안전표지를 기반으로 도시부 도로 환경에서 자율주행차량의 주행행태 변화에 따른 적정 인지 시점을 도출하는 것을 목적으로 하였다. 이를 위해 현재 설치 및 운영 중인 교통안전표지 중에서 주행행태 변화를 유도하는 32종의 표지를 선별하고 주행행태 변화에 따라 3가지로 분류하였다. 이를 토대로 설계된 3가지 시나리오 (일시정지, 속도변경, 차로변경)를 통해 자율주행차량의 인지 시점에 따른 교통류 영향을 확인하고, 자율주행차량의 적정 인지 시점에 대해 도출하였다. 분석 결과, 각 시나리오는 교통류의 변화 및 안전성을 보장하기 위해 기존 설치된 교통안전표지 정보를 미리 전달받아야 하는 것으로 나타났다. 이에 따라, 본 연구를 통해 도출된 적정 인지 시점은 자율주행차량에게 메세지 셋을 전달하는 기준 수립이나 자율주행차량을 위한 교통안전표지 개정 근거로 활용될 수 있을 것으로 사료된다. 이와 더불어, 향후 자율주행차량의 실 도로 도입에 따라 도시부 도로에서 안전하고 효율적인 주행 전략 수립에도 기여 할 수 있을 것으로 판단된다.

복합임무 무인수상정의 마스트 및 특수임무장비 장착부 설계 및 강도해석 (Design and Strength Analysis of a Mast and Mounting Part of Dummy Gun for Multi-Mission Unmanned Surface Vehicle)

  • 손주원;김동희;최병웅;이영진
    • 한국정보기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.51-59
    • /
    • 2018
  • 본 논문에서는 해상에서 수상감시정찰 및 수중탐색임무를 수행할 수 있는 복합임무 무인수상정을 설계하였으며, 설계된 복합임무 무인수상정의 선체부는 유리섬유강화플라스틱을 이용하여 제작하였다. 수상감시정찰 및 자율운항 임무를 수행하기 위해 레이더, 라이다, 카메라 등과 같은 다양한 항법센서를 마스트에 장착하였으며, 특수임무를 수행하기 위한 더미건 장비를 선수부 갑판에 장착하였다. 악천후의 해상상태에서 주어진 임무를 성공적으로 수행하기 위해서는 갑판에 탑재된 구조물들에 대한 강성확보가 매우 중요하다. 따라서 본 논문에서는 정하중, 횡하중 및 수직방향 운동에 따른 마스트 구조물의 강도해석 및 더미건 장비의 충격량에 대한 선체부의 강도해석을 시뮬레이션 및 실험을 통해 수행하였다. 시뮬레이션 및 실험 결과에 따라 본 연구에서 설계된 마스트 구조물 및 더미건 장착부의 선체부는 충분한 강성을 확보하고 있음을 확인하였다.

롱샷 무인기를 활용한 유무인 협업 공대공 전술 개발 (Manned-Unmanned Teaming Air-to-Air Combat Tactic Development Using Longshot Unmanned Aerial Vehicle)

  • 유승훈;박명환;황성인;설현주
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.64-72
    • /
    • 2021
  • Manned-unmanned teaming can be a very promising air-to-air combat tactic since it can maximize the advantage of combining human insight with the robustness of the machine. The rapid advances in artificial intelligence and autonomous control technology will speed up the development of manned-unmanned teaming air-to-air combat system. In this paper, we introduce a manned-unmanned teaming air-to-air combat tactic which is composed of a manned aircraft and an UAV. In this tactic, a manned aircraft equipped with radar is functioning both as a sensor to detect the hostile aircraft and as a controller to direct the UAV to engage the hostile aircraft. The UAV equipped with missiles is functioning as an actor to engage the hostile aircraft. We also developed a combat scenario of executing this tactic where the manned-unmanned teaming is engaging a hostile aircraft. The hostile aircraft is equipped with both missiles and radar. To demonstrate the efficiency of the tactic, we run the simulation of the scenario of the tactic. Using the simulation, we found the optimal formation and maneuver for the manned-unmanned teaming where the manned-unmanned teaming can survive while the hostile aircraft is shot-downed. The result of this study can provide an insight to how manned aircraft can collaborate with UAV to carry out air-to-air combat missions.