• 제목/요약/키워드: Autonomous underwater robot

검색결과 48건 처리시간 0.026초

Design and Control of a Six-degree of Freedom Autonomous Underwater Robot 'CHALAWAN'

  • Chatchanayuenyong, T.;Parnichkun, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1110-1115
    • /
    • 2004
  • Water covers two-thirds of the earth and has a great influence on the future existence of all human being. Thailand has extensive coastline and near shore water that contain vast biological and mineralogical resources. The rivers and canals can be found around the country especially in the Bangkok, which once called the Venice of the East. Autonomous underwater robot (AUR) will be soon a tool to help us better understand water resources and other environmental issues. This paper presents the design and basic control of a six-degree of freedom AUR "Chalawan", which was constructed to be used as a testbed for shallow. It is a simple low cost open-frame design, which can be modified easily to supports various research areas in the underwater environment. It was tested with a conventional proportional-integral-derivative (PID) controller. After fine-tuning of the controller gains, the results showed the controller's good performances. In the future, the dynamic model of the robot will be analyzed and identified. The advanced control algorithm will be implemented based on the obtained model.

  • PDF

Autonomous swimming technology for an AUV operating in the underwater jacket structure environment

  • Li, Ji-Hong;Park, Daegil;Ki, Geonhui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.679-687
    • /
    • 2019
  • This paper presents the autonomous swimming technology developed for an Autonomous Underwater Vehicle (AUV) operating in the underwater jacket structure environment. To prevent the position divergence of the inertial navigation system constructed for the primary navigation solution for the vehicle, we've developed kinds of marker-recognition based underwater localization methods using both of optical and acoustic cameras. However, these two methods all require the artificial markers to be located near to the cameras mounted on the vehicle. Therefore, in the case of the vehicle far away from the structure where the markers are usually mounted on, we may need alternative position-aiding solution to guarantee the navigation accuracy. For this purpose, we develop a sonar image processing based underwater localization method using a Forward Looking Sonar (FLS) mounted in front of the vehicle. The primary purpose of this FLS is to detect the obstacles in front of the vehicle. According to the detected obstacle(s), we apply an Occupancy Grid Map (OGM) based path planning algorithm to derive an obstacle collision-free reference path. Experimental studies are carried out in the water tank and also in the Pohang Yeongilman port sea environment to demonstrate the effectiveness of the proposed autonomous swimming technology.

수중 초음파 거리 센서를 이용한 수중 로봇의 2차원 지도 확장 실험 (Experimental Result on Map Expansion of Underwater Robot Using Acoustic Range Sonar)

  • 이영준;최진우;이윤건;최현택
    • 로봇학회논문지
    • /
    • 제13권2호
    • /
    • pp.79-85
    • /
    • 2018
  • This study focuses on autonomous exploration based on map expansion for an underwater robot equipped with acoustic sonars. Map expansion is applicable to large-area mapping, but it may affect localization accuracy. Thus, as the key contribution of this paper, we propose a method for underwater autonomous exploration wherein the robot determines the trade-off between map expansion ratio and position accuracy, selects which of the two has higher priority, and then moves to a mission step. An occupancy grid map is synthesized by utilizing the measurements of an acoustic range sonar that determines the probability of occupancy. This information is then used to determine a path to the frontier, which becomes the new search point. During area searching and map building, the robot revisits artificial landmarks to improve its position accuracy as based on imaging sonar-based recognition and EKF-SLAM if the position accuracy is above the predetermined threshold. Additionally, real-time experiments were conducted by using an underwater robot, yShark, to validate the proposed method, and the analysis of the results is discussed herein.

P-SURO II 하이브리드 자율무인잠수정 기술 개발 및 현장 검증 (Development of P-SURO II Hybrid Autonomous Underwater Vehicle and its Experimental Studies)

  • 이계홍;이문직;박상현;김정태;김종걸;서진호
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, we present the development of P-SURO II hybrid AUV (Autonomous Underwater Vehicle) which can be operated in both of AUV and ROV (Remotely Operated Vehicle) modes. In its AUV mode, the vehicle is supposed to carry out some of underwater missions which are difficult to be achieved in ROV mode due to the tether cable. To accomplish its missions such as inspection and maintenance of complex underwater structures in AUV mode, the vehicle is required to have high level of autonomy including environmental recognition, obstacle avoidance, autonomous navigation, and so on. In addition to its systematic development issues, some of algorithmic issues are also discussed in this paper. Various experimental studies are also presented to demonstrate these developed autonomy algorithms.

수중형 자율운항 해양로봇키트 개발 (Development of Underwater-type Autonomous Marine Robot-kit)

  • 김현식;강형주;함연재;박승수
    • 한국지능시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.312-318
    • /
    • 2012
  • 최근에는, 극한 분야에서 해양로봇의 필요성이 제기되고 있으나, 그 기반이 매우 부족한 실정이다. 다행히 로봇경진대회가 활성화되고 로봇교육에 대한 수요가 증가하는 추세이므로, 해양로봇키트의 개발/보급을 통하여 해양로봇 연구개발/산업화 기반을 마련하고 전문인력을 양성하는 것이 바람직하다. 그런데, 기존에는 수중이동 및 표적 탐지/회피가 가능한 해양로봇경진대회용 수중형 자율운항 해양로봇키트가 없었다. 이 문제를 해결하기 위해서 수중이동성, 수중방수성 및 무게조절성이 우수한 보급형 해양로봇키트가 개발되었다. 개발된 키트의 성능 검증을 위해서 Surge, Pitch, Yaw, 장애물회피 등의 시험 평가가 수행되었다. 시험평가 결과는 개발된 키트의 실제 적용 가능성을 보여준다.

Autonomous Navigation of an Underwater Robot in the Presence of Multiple Moving Obstacles

  • Kwon, Kyoung-Youb;Joh, Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.124-130
    • /
    • 2005
  • Obstacle avoidance of underwater robots based on a modified virtual force field algorithm is proposed in this paper. The VFF(Virtual Force Field) algorithm, which is widely used in the field of mobile robots, is modified for application to the obstacle avoidance of underwater robots. This Modified Virtual Force Field(MVFF) algorithm using the fuzzy lgoc can be used in moving obstacles avoidance. A fuzzy algorithm is devised to handle various situations which can be faced during autonomous navigation of underwater robots. The proposed obstacle avoidance algorithm has ability to handle multiple moving obstacles. Results of simulation show that the proposed algorithm can be efficiently applied to obstacle avoidance of the underwater robots.

부이기반 자율형 수상로봇키트 개발 (Development of Buoy-based Autonomous Surface Robot-kit)

  • 김현식
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.249-254
    • /
    • 2015
  • Buoys are widely used in marine areas because they can mark positions and simultaneously acquire and exchange underwater, surface, and airborne information. Recently, the need for controlling and optimizing a buoy's position and attitude has been raised to achieve successful communication in a heterogeneous collaborative network composed of an underwater robot, a surface robot, and an airborne robot. A buoy in the form of a marine robot would be ideal to address this issue, as it can serve as a moving node of the communication network. Therefore, a buoy-based autonomous surface robot-kit with the abilities of sonar-based avoidance, dynamic position control, and static attitude control was developed and is discussed in this paper. The test and evaluation results of this kit show the possibility of real-world applications and the need for additional studies.

생체모방형 수중로봇의 해양작전 운용개념 및 핵심소요기술 (Applications and Key Technologies of Biomimetic Underwater Robot for Naval Operations)

  • 이기영
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.189-200
    • /
    • 2015
  • This paper gives an overview on the some potential applications and key technologies of biomimetic underwater robot for naval operations. Unlike most manned underwater naval systems, biomimetic underwater robots can be especially useful in near-land or harbour areas due to their ability to operate in shallow water effectively. Biomimetic underwater robot provide advantages in reaching locations that would be difficult or too dangerous for a manned vehicle to reach, as well as providing a level of autonomy that can remove the requirement for dedicated human operator support. Using multiple or schools of underwater robots would provide increased flexibility for navigation, communication and surveillance ability. And it alleviate some of the restrictions associated with speed and endurance design constraints.

수중 벽면 주행 기구의 설계 (The design of wall-climbing underwater robot system)

  • 김병만;김경훈;박영수;박기용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.237-240
    • /
    • 1997
  • The design of underwater inspection robot system is presented. This robot system is designed for wall inspection in the nuclear plant facility. This paper describes the major components of the robot and its structures. This robot system is consisted of three parts : mechanical electrical and sensing pail. The main problem of designing mechanical part is to select the mechanism of driving. In this system the propeller driving mechanism is selected which can be move the robot continuously. For reducing the size of robot, we designed the CPU and motor controller board. The sensor system is consisted of two parts. One is environment monitoring part and the other is robot localization system.

  • PDF

유인플랫폼에서의 수중로봇 운용을 위한 진수 및 회수 체계 고찰 (Consideration of Launch and Recovery Systems for Operation of Underwater Robot from Manned Platform)

  • 이기영
    • 한국해양공학회지
    • /
    • 제30권2호
    • /
    • pp.141-149
    • /
    • 2016
  • In this technical note, the issues and challenges for the launch and recovery systems (LARS) and related techniques for the operation of an underwater robot from a manned platform are considered. Various types of LARS fitted to specific manned platforms, surface or sub-surface, are surveyed and categorized. The current UUV launch and recovery systems from surface ships and submarines utilize time consuming processes. As underwater robot technologies evolve and their roles are defined, safe and effective launch and recovery methods should be developed capable of reliable and efficient operations, particularly at a high sea state. To improve the existing underwater robot capabilities, LARS technology maturation is required in the near term, leading to the ability to incorporate autonomous LARS for an underwater robot on a manned platform. In the near term, particular emphasis should be placed on UUV LARS, which are surface ship based, with submarine based systems in the long term. Furthermore, for a dedicated LARS ship, independent of the existing host ship type, particular emphasis should be given to fully utilizing the capabilities of underwater robots.