• Title/Summary/Keyword: Autonomous system

Search Result 2,447, Processing Time 0.027 seconds

Optimization of Distributed Autonomous Robotic Systems Based on Artificial Immune Systems

  • Hwang, Chul-Min;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.220-223
    • /
    • 2003
  • In this paper, we optimize distributed autonomous robotic system based on artificial immune system. Immune system has B-cell and T-cell that are two major types of lymphocytes. B-cells take part in humoral responses that secrete antibodies and T-cells take part in cellular responses that stimulate or suppress cells connected to the immune system. They have communicating network equation, which have many parameters. The distributed autonomous robotics system based on this artificial immune system is modeled on the B-cells and T-cells system. So performance of system is influenced by parameters of immune network equation. We can improve performance of Distributed autonomous robotics system based on artificial immune system.

  • PDF

Development of Steering Control System for Autonomous Vehicle Using Geometry-Based Path Tracking Algorithm

  • Park, Myungwook;Lee, Sangwoo;Han, Wooyong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.617-625
    • /
    • 2015
  • In this paper, a steering control system for the path tracking of autonomous vehicles is described. The steering control system consists of a path tracker and primitive driver. The path tracker generates the desired steering angle by using the look-ahead distance, vehicle heading, and a lateral offset. A method for applying an autonomous vehicle to path tracking is an advanced pure pursuit method that can reduce cutting corners, which is a weakness of the pure pursuit method. The steering controller controls the steering actuator to follow the desired steering angle. A servo motor is installed to control the steering handle, and it can transmit the steering force using a belt and pulley. We designed a steering controller that is applied to a proportional integral differential controller. However, because of a dead band, the path tracking performance and stability of autonomous vehicles are reduced. To overcome the dead band, a dead band compensator was developed. As a result of the compensator, the path tracking performance and stability are improved.

Application on Autonomous Things Monitoring System for IoT Platform of Smart City (스마트시티 IoT플랫폼 구축을 위한 자율사물 모니터링 시스템 적용성 평가)

  • Yoo, Chan Ho;Baek, Seung Cheol
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.103-108
    • /
    • 2020
  • Autonomous things system is a technology that judges and acts based on using surrounding information by itself, and it is evaluated as a future technology that can replace the current IoT technology. The current IoT technology is widely used from facility monitoring to machine control but it is shown weakness as a evaluation and prediction technique despite of smart city important technology. In this study, in order to confirm the application of the autonomous things technology, a monitoring system was installed on a real reservoir dam facility and long-term monitoring was performed that the measuring device itself judges and control as a facility monitoring technology. The autonomous things technology was confirmed during 19 months and it is possible to continuous measurement in the same way as current automated instrumentation. In addition, it was confirmed that the ICT device itself could to control autonomously measurement cycle according to the rainfall by itself.

Autonomous Decentralized Container Terminal Operating System (자율 분산형 컨테이너 터미널 시스템)

  • 배민주;김환성
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.393-397
    • /
    • 2004
  • In these days, a scale of system is more and more complex and large. The centralized system has the operation management method to be limited in the large scale system. In this paper, we proposed ACOS(Autonomous decentralized Container terminal Operating System). It is applied to container terminal using by autonomous decentralized system which can solve the problem of the centralized operation system. Also, we can defined a function of the ACOS's sub-system and showed a flowchart on operation method for the ACOS.

  • PDF

Design of a Visual Servoing System of an Autonomous Mobile Robot using Fuzzy Logic System (자율이동로봇의 목표물 추적을 위한 시각구동장치의 설계 및 제어)

  • Song Un-Ji;Choi Byung-Jae;Yoo Seog-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.454-459
    • /
    • 2006
  • The research and development for autonomous mobile robots has widely been reported. This paper describes a fuzzy logic based visual servoing system for an autonomous mobile robot. An existing system always needs to keep a moving object in overall image. This makes difficult to move the autonomous mobile robot spontaneously. In this paper we first explain an autonomous mobile robot and fuzzy logic system. And then we design a fuzzy logic based visual servoing system. We extract some features of the object from an overall image and then design a fuzzy logic system for controlling the visual servoing system to an exact position. We here introduce a shooting robot that can track an object and hit it. We show that the proposed system presents a desirable performance by a computer simulation and some experiments.

Development of Infrared Telemeter for Autonomous Orchard Vehicle (과수원용 차량의 자율주행을 위한 적외선 측거 장치개발)

  • 장익주;김태한;이상민
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.131-140
    • /
    • 2000
  • Spraying operation is one of the most essential in an orchard management and it is also hazardous to human body. for automatic and unmanned spraying , an autonomous travelling vehicle is demanded. In this study, a telemeter was developed using infrared beam which could detect trunks and obstacles measure distance and direction from the vehicle travelling in the orchard. The telemeter system was composed of two infrared LED transmitters and receivers, a beam scanning device for continuous object detection , two rotary encoders for angle detector, and a beam level controller for uneven soil surface. The detected distance and direction signal s were sent to personal computer which made for the system display the angular and distance measurements through I/O board. According to a field test in an apple farm, the system detected up to 10m distance under 12 V of transmitted beam intensity, however, it was recommended that the proper beam transmit intensity be 7 v at the 10 m distance, because of the negative effect to human body at 12 V. The error rate of this system was 0.92 % when the actual distance was compared to measured one. The system was feasible at the small error rate. The developed telemeter system was an important part for autonomous travelling vehicle provided the real time object recognition . A direction control system could be constructed suing the system. It is expected that the system could greatly contribute to the development of autonomous farm vehicle.

  • PDF

A study on Precise Trajectory Tracking control of Robot system (로봇시스템의 정밀 궤적 추적제어에 관한 연구)

  • Lee, Woo-Song;Kim, Won-Il;Yang, Jun-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.82-89
    • /
    • 2015
  • This study proposes a new approach to design and control for autonomous mobile robots. In this paper, we describes a fuzzy logic based visual servoing system for an autonomous mobile robot. An existing system always needs to keep a moving object in overall image. This mes difficult to move the autonomous mobile robot spontaneously. In this paper we first explain an autonomous mobile robot and fuzzy logic system. And then we design a fuzzy logic based visual servoing system. We extract some features of the object from an overall image and then design a fuzzy logic system for controlling the visual servoing system to an exact position. We here introduce a shooting robot that can track an object and hit it. It is illustrated that the proposed system presents a desirable performance by a computer simulation and some experiments.

An intelligent control system design for autonomous underwater vehicle (무인 수중운동체를 위한 지능제어시스템 설계)

  • Lee, Dong-Ik;Kwak, Dong-Hoon;Choi, Jung-Lak
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.227-237
    • /
    • 1997
  • Autonomous Underwater Vehicles(AUVs) have become an important tool for various purposes in subsea: inspection, recovery, construction, etc., and the development of autonomous control system is luglay desirable- thete zffe many problems associated with designing the control system for AUV due to unknown underwater envimn-Tnent, the possibility of subsystem failures, and unpredictable changes in the dynamics of the vehicle. In this paper, an autonomous control system based on the intelligent control theory to enhance operation efficiency of the ALTV is presented. The control system has a hierarchical structure which consists of mission planning level, mission control level, navigation level, and execution level. The performance of the control system is investigated by computer simulation. The results show that the proposed control system can be applied successfully to the AUV in spite of the possibility of failures in the vehicle and the collision hazard in the sea environment.

  • PDF

Multiple Path-planning of Unmanned Autonomous Forklift using Modified Genetic Algorithm and Fuzzy Inference system (수정된 유전자 알고리즘과 퍼지 추론 시스템을 이용한 무인 자율주행 이송장치의 다중경로계획)

  • Kim, Jung-Min;Heo, Jung-Min;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1483-1490
    • /
    • 2009
  • This parer is presented multiple path-planning of unmanned autonomous forklift using modified genetic algorithm and fuzzy inference system. There are a task-level feedback method and a method that path is dynamically replaned in realtime while the autonomous vehicles are moving by means of an optimal algorithm for existing multiple path-planning. However, such methods cause malfunctions and inefficiency in the sense of time and energy, and path-planning should be dynamically replanned in realtime. To solve these problems, we propose multiple path-planning using modified genetic algorithm and fuzzy inference system and show the performance with autonomous vehicles. For experiment, we designed and built two autonomous mobile vehicles that equipped with the same driving control part used in actual autonomous forklift, and test the proposed multiple path-planning algorithm. Experimental result that actual autonomous mobile vehicle, we verified that fast optimized path-planning and efficient collision avoidance are possible.

Study on the Prioritization of Improvement Plan for Road Traffic Safety Projects for Business Vehicles by the Introduction of Autonomous Vehicles (자율주행자동차 도입에 따른 사업용 차량 도로교통 안전사업 개선방안 우선순위 선정 연구)

  • Park, Sangmin;Jeong, Harim;Lee, Seungjun;Park, Sujung;Nam, Doohee;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.1-14
    • /
    • 2017
  • Recently, the automobile industry is rapidly changing due to autonomous vehicles based on advanced ICT technology. As a result, studies related to autonomous vehicles have also been actively conducted. However, most studies are focusing on the autonomous driving technology so that the prediction of changes in road traffic safety and associated legal system due to the introduction of autonomous vehicles are lacking. The purpose of this study is to suggest improvement methods and priorities of road traffic safety projects according to the introduction of autonomous vehicles. As a result of the AHP analysis using the results of the questionnaire surveyed for autonomous driving car experts, it was analyzed that revision of the traffic safety inspection law and development of education system for autonomous driving motor drivers and operators should be given top priority.