• Title/Summary/Keyword: Autonomous racing

Search Result 9, Processing Time 0.017 seconds

Development of Drone Racing Simulator using SLAM Technology and Reconstruction of Simulated Environments (SLAM 기술을 활용한 가상 환경 복원 및 드론 레이싱 시뮬레이션 제작)

  • Park, Yonghee;Yu, Seunghyun;Lee, Jaegwang;Jeong, Jonghyeon;Jo, Junhyeong;Kim, Soyeon;Oh, Hyejun;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.245-249
    • /
    • 2021
  • In this paper, we present novel simulation contents for drone racing and autonomous flight of drone. With Depth camera and SLAM, we conducted mapping 3 dimensional environment through RTAB-map. The 3 dimensional map is represented by point cloud data. After that we recovered this data in Unreal Engine. This recovered raw data reflects real data that includes noise and outlier. Also we built drone racing contents like gate and obstacles for evaluating drone flight in Unreal Engine. Then we implemented both HITL and SITL by using AirSim which offers flight controller and ROS api. Finally we show autonomous flight of drone with ROS and AirSim. Drone can fly in real place and sensor property so drone experiences real flight even in the simulation world. Our simulation framework increases practicality than other common simulation that ignore real environment and sensor.

Motion Planning of Autonomous Racing Vehicles for Mimicking Human Driver Characteristics (운전자 주행 특성 모사를 위한 트랙 한계 자율 주행 차량의 거동 계획 알고리즘)

  • Changhee Kim;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.1
    • /
    • pp.6-11
    • /
    • 2024
  • This paper presents a motion planning algorithm of autonomous racing vehicles for mimicking the characteristics of a human driver. Time optimal maneuver of a race car has been actively studied as a major research area over the past decades. Although the time optimization problem yields a single time series solution of minimum time maneuver inputs for the vehicle, human drivers achieve similar lap times while taking various racing lines and velocity profiles. In order to model the characteristics of a specific driver and reproduce the motion, a stochastic motion planning framework based on kernelized motion primitive is introduced. The proposed framework imitates the behavior of the generated reference motion, which is based on a small number of human demonstration laps along the racetrack using Gaussian mixture model and Gaussian mixture regression. The mean and covariance of the racing line and velocity profile mimicking the driver are obtained by accumulating the outputs tested at equidistantly sampled input points. The results confirmed that the obtained lateral and longitudinal motion simulates the driver's driving characteristics, which are feasible for actual vehicle test environments.

Implementation of an Autonomous Driving System for the Segye AI Robot Car Race Competition (세계 AI 로봇 카레이스 대회를 위한 자율 주행 시스템 구현)

  • Choi, Jung Hyun;Lim, Ye Eun;Park, Jong Hoon;Jeong, Hyeon Soo;Byun, Seung Jae;Sagong, Ui Hun;Park, Jeong Hyun;Kim, Chang Hyun;Lee, Jae Chan;Kim, Do Hyeong;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.198-208
    • /
    • 2022
  • In this paper, an autonomous driving system is implemented for the Segye AI Robot Race Competition that multiple vehicles drive simultaneously. By utilizing the ERP42-racing platform, RTK-GPS, and LiDAR sensors provided in the competition, we propose an autonomous driving system that can drive safely and quickly in a road environment with multiple vehicles. This system consists of a recognition, judgement, and control parts. In the recognition stage, vehicle localization and obstacle detection through waypoint-based LiDAR ROI were performed. In the judgement stage, target velocity setting and obstacle avoidance judgement are determined in consideration of the straight/curved section and the distance between the vehicle and the neighboring vehicle. In the control stage, adaptive cruise longitudinal velocity control based on safe distance and lateral velocity control based on pure-pursuit are performed. To overcome the limited experimental environment, simulation and partial actual experiments were conducted together to develop and verify the proposed algorithms. After that, we participated in the Segye AI Robot Race Competition and performed autonomous driving racing with verified algorithms.

Uncertainty Sequence Modeling Approach for Safe and Effective Autonomous Driving (안전하고 효과적인 자율주행을 위한 불확실성 순차 모델링)

  • Yoon, Jae Ung;Lee, Ju Hong
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.9-20
    • /
    • 2022
  • Deep reinforcement learning(RL) is an end-to-end data-driven control method that is widely used in the autonomous driving domain. However, conventional RL approaches have difficulties in applying it to autonomous driving tasks due to problems such as inefficiency, instability, and uncertainty. These issues play an important role in the autonomous driving domain. Although recent studies have attempted to solve these problems, they are computationally expensive and rely on special assumptions. In this paper, we propose a new algorithm MCDT that considers inefficiency, instability, and uncertainty by introducing a method called uncertainty sequence modeling to autonomous driving domain. The sequence modeling method, which views reinforcement learning as a decision making generation problem to obtain high rewards, avoids the disadvantages of exiting studies and guarantees efficiency, stability and also considers safety by integrating uncertainty estimation techniques. The proposed method was tested in the OpenAI Gym CarRacing environment, and the experimental results show that the MCDT algorithm provides efficient, stable and safe performance compared to the existing reinforcement learning method.

Development of an Autonomous Navigation System for Unmanned Ground Vehicle

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.4
    • /
    • pp.244-250
    • /
    • 2008
  • This paper describes the design and implementation of an unmanned ground vehicle (UGV) and also estimates how well autonomous navigation and remote control of UGV can be performed through the optimized arbitration of several sensor data, which are acquired from vision, obstacle detection, positioning system, etc. For the autonomous navigation, lane detection and tracing, global positioning, and obstacle avoidance are necessarily required. In addition, for the remote control, two types of experimental environments are established. One is to use a commercial racing wheel module, and the other is to use a haptic device that is useful for a user application based on virtual reality. Experimental results show that autonomous navigation and remote control of the designed UGV can be achieved with more effectiveness and accuracy using the proper arbitration of sensor data and navigation plan.

  • PDF

Long Distance Vehicle Recognition and Tracking using Shadow (그림자를 이용한 원거리 차량 인식 및 추적)

  • Ahn, Young-Sun;Kwak, Seong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.251-256
    • /
    • 2019
  • This paper presents an algorithm for recognizing and tracking a vehicle at a distance using a monocular camera installed at the center of the windshield of a vehicle to operate an autonomous vehicle in a racing. The vehicle is detected using the Haar feature, and the size and position of the vehicle are determined by detecting the shadows at the bottom of the vehicle. The region around the recognized vehicle is determined as ROI (Region Of Interest) and the vehicle shadow within the ROI is found and tracked in the next frame. Then the position, relative speed and direction of the vehicle are predicted. Experimental results show that the vehicle is recognized with a recognition rate of over 90% at a distance of more than 100 meters.

Real-time Speed Sign Recognition Method Using Virtual Environments and Camera Images (가상환경 및 카메라 이미지를 활용한 실시간 속도 표지판 인식 방법)

  • Eunji Song;Taeyun Kim;Hyobin Kim;Kyung-Ho Kim;Sung-Ho Hwang
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.92-99
    • /
    • 2023
  • Autonomous vehicles should recognize and respond to the specified speed to drive in compliance with regulations. To recognize the specified speed, the most representative method is to read the numbers of the signs by recognizing the speed signs in the front camera image. This study proposes a method that utilizes YOLO-Labeling-Labeling-EfficientNet. The sign box is first recognized with YOLO, and the numeric digit is extracted according to the pixel value from the recognized box through two labeling stages. After that, the number of each digit is recognized using EfficientNet (CNN) learned with the virtual environment dataset produced directly. In addition, we estimated the depth of information from the height value of the recognized sign through regression analysis. We verified the proposed algorithm using the virtual racing environment and GTSRB, and proved its real-time performance and efficient recognition performance.

Shape and Spacing Effects on Curvy Twin Sail for Autonomous Sailing Drone (무인 해상 드론용 트윈 세일의 형태와 간격에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.931-941
    • /
    • 2020
  • There is a growing interest this paper for ocean sensing where autonomous vehicles can play an essential role in assisting engineers, researchers, and scientists with environmental monitoring and collecting oceanographic data. This study was conducted to develop a rigid sail for the autonomous sailing drone. Our study aims to numerically analyze the aerodynamic characteristics of curvy twin sail and compare it with wing sail. Because racing regulations limit the sail shape, only the two-dimensional geometry (2D) was open for an optimization. Therefore, the first objective was to identify the aerodynamic performance of such curvy twin sails. The secondary objective was to estimate the effect of the sail's spacing and shapes. A viscous Navier-Stokes flow solver was used for the numerical aerodynamic analysis. The 2D aerodynamic investigation is a preliminary evaluation. The results indicated that the curvy twin sail designs have improved lift, drag, and driving force coefficient compared to the wing sails. The spacing between the port and starboard sails of curvy twin sail was an important parameter. The spacing is 0.035 L, 0.07 L, and 0.14 L shows the lift coefficient reduction because of dramatically stall effect, while flow separation is improved with spacing is 0.21 L, 0.28 L, and 0.35 L. Significantly, the spacing 0.28 L shows the maximum high pressure at the lower area and the small low pressure area at leading edges. Therefore, the highest lift was generated.

Development of the Program for Reconnaissance and Exploratory Drones based on Open Source (오픈 소스 기반의 정찰 및 탐색용 드론 프로그램 개발)

  • Chae, Bum-sug;Kim, Jung-hwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.33-40
    • /
    • 2022
  • With the recent increase in the development of military drones, they are adopted and used as the combat system of battalion level or higher. However, it is difficult to use drones that can be used in battles below the platoon level due to the current conditions for the formation of units in the Korean military. In this paper, therefore, we developed a program drones equipped with a thermal imaging camera and LiDAR sensor for reconnaissance and exploration that can be applied in battles below the platoon level. Using these drones, we studied the possibility and feasibility of drones for small-scale combats that can find hidden enemies, search for an appropriate detour through image processing and conduct reconnaissance and search for battlefields, hiding and cover-up through image processing. In addition to the purpose of using the proposed drone to search for an enemies lying in ambush in the battlefield, it can be used as a function to check the optimal movement path when a combat unit is moving, or as a function to check the optimal place for cover-up or hiding. In particular, it is possible to check another route other than the route recommended by the program because the features of the terrain can be checked from various viewpoints through 3D modeling. We verified the possiblity of flying by designing and assembling in a form of adding LiDAR and thermal imaging camera module to a drone assembled based on racing drone parts, which are open source hardware, and developed autonomous flight and search functions which can be used even by non-professional drone operators based on open source software, and then installed them to verify their feasibility.