• 제목/요약/키워드: Autonomous racing

검색결과 9건 처리시간 0.022초

SLAM 기술을 활용한 가상 환경 복원 및 드론 레이싱 시뮬레이션 제작 (Development of Drone Racing Simulator using SLAM Technology and Reconstruction of Simulated Environments)

  • 박용희;유승현;이재광;정종현;조준형;김소연;오혜준;문형필
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.245-249
    • /
    • 2021
  • In this paper, we present novel simulation contents for drone racing and autonomous flight of drone. With Depth camera and SLAM, we conducted mapping 3 dimensional environment through RTAB-map. The 3 dimensional map is represented by point cloud data. After that we recovered this data in Unreal Engine. This recovered raw data reflects real data that includes noise and outlier. Also we built drone racing contents like gate and obstacles for evaluating drone flight in Unreal Engine. Then we implemented both HITL and SITL by using AirSim which offers flight controller and ROS api. Finally we show autonomous flight of drone with ROS and AirSim. Drone can fly in real place and sensor property so drone experiences real flight even in the simulation world. Our simulation framework increases practicality than other common simulation that ignore real environment and sensor.

운전자 주행 특성 모사를 위한 트랙 한계 자율 주행 차량의 거동 계획 알고리즘 (Motion Planning of Autonomous Racing Vehicles for Mimicking Human Driver Characteristics)

  • 김창희;이경수
    • 자동차안전학회지
    • /
    • 제16권1호
    • /
    • pp.6-11
    • /
    • 2024
  • This paper presents a motion planning algorithm of autonomous racing vehicles for mimicking the characteristics of a human driver. Time optimal maneuver of a race car has been actively studied as a major research area over the past decades. Although the time optimization problem yields a single time series solution of minimum time maneuver inputs for the vehicle, human drivers achieve similar lap times while taking various racing lines and velocity profiles. In order to model the characteristics of a specific driver and reproduce the motion, a stochastic motion planning framework based on kernelized motion primitive is introduced. The proposed framework imitates the behavior of the generated reference motion, which is based on a small number of human demonstration laps along the racetrack using Gaussian mixture model and Gaussian mixture regression. The mean and covariance of the racing line and velocity profile mimicking the driver are obtained by accumulating the outputs tested at equidistantly sampled input points. The results confirmed that the obtained lateral and longitudinal motion simulates the driver's driving characteristics, which are feasible for actual vehicle test environments.

세계 AI 로봇 카레이스 대회를 위한 자율 주행 시스템 구현 (Implementation of an Autonomous Driving System for the Segye AI Robot Car Race Competition)

  • 최정현;임예은;박종훈;정현수;변승재;사공의훈;박정현;김창현;이재찬;김도형;황면중
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.198-208
    • /
    • 2022
  • In this paper, an autonomous driving system is implemented for the Segye AI Robot Race Competition that multiple vehicles drive simultaneously. By utilizing the ERP42-racing platform, RTK-GPS, and LiDAR sensors provided in the competition, we propose an autonomous driving system that can drive safely and quickly in a road environment with multiple vehicles. This system consists of a recognition, judgement, and control parts. In the recognition stage, vehicle localization and obstacle detection through waypoint-based LiDAR ROI were performed. In the judgement stage, target velocity setting and obstacle avoidance judgement are determined in consideration of the straight/curved section and the distance between the vehicle and the neighboring vehicle. In the control stage, adaptive cruise longitudinal velocity control based on safe distance and lateral velocity control based on pure-pursuit are performed. To overcome the limited experimental environment, simulation and partial actual experiments were conducted together to develop and verify the proposed algorithms. After that, we participated in the Segye AI Robot Race Competition and performed autonomous driving racing with verified algorithms.

안전하고 효과적인 자율주행을 위한 불확실성 순차 모델링 (Uncertainty Sequence Modeling Approach for Safe and Effective Autonomous Driving)

  • 윤재웅;이주홍
    • 스마트미디어저널
    • /
    • 제11권9호
    • /
    • pp.9-20
    • /
    • 2022
  • 심층강화학습은 자율주행 도메인에서 널리 사용되는 end-to-end 데이터 기반 제어 방법이다. 그러나 기존의 강화학습 접근 방식은 자율주행 과제에 적용하기에는 비효율성, 불안정성, 불확실성 등의 문제로 어려움이 존재한다. 이러한 문제들은 자율주행 도메인에서 중요하게 작용한다. 최근의 연구들은 이런 문제를 해결하고자 많은 시도가 이루어지고 있지만 계산 비용이 많고 특별한 가정에 의존한다. 본 논문에서는 자율주행 도메인에 불확실성 순차 모델링이라는 방법을 도입하여 비효율성, 불안정성, 불확실성을 모두 고려한 새로운 알고리즘 MCDT를 제안한다. 강화학습을 높은 보상을 얻기 위한 의사 결정 생성 문제로 바라보는 순차 모델링 방식은 기존 연구의 단점을 회피하고 효율성과 안정성을 보장하며, 여기에 불확실성 추정 기법을 융합해 안전성까지 고려한다. 제안 방법은 OpenAI Gym CarRacing 환경을 통해 실험하였고 실험 결과는 MCDT 알고리즘이 기존의 강화학습 방법에 비해 효율적이고 안정적이며 안전한 성능을 내는 것을 보인다.

Development of an Autonomous Navigation System for Unmanned Ground Vehicle

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • 대한임베디드공학회논문지
    • /
    • 제3권4호
    • /
    • pp.244-250
    • /
    • 2008
  • This paper describes the design and implementation of an unmanned ground vehicle (UGV) and also estimates how well autonomous navigation and remote control of UGV can be performed through the optimized arbitration of several sensor data, which are acquired from vision, obstacle detection, positioning system, etc. For the autonomous navigation, lane detection and tracing, global positioning, and obstacle avoidance are necessarily required. In addition, for the remote control, two types of experimental environments are established. One is to use a commercial racing wheel module, and the other is to use a haptic device that is useful for a user application based on virtual reality. Experimental results show that autonomous navigation and remote control of the designed UGV can be achieved with more effectiveness and accuracy using the proper arbitration of sensor data and navigation plan.

  • PDF

그림자를 이용한 원거리 차량 인식 및 추적 (Long Distance Vehicle Recognition and Tracking using Shadow)

  • 안영선;곽성우
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.251-256
    • /
    • 2019
  • 본 논문에서는 무인자율주행자동차를 레이싱 경기에 운용하기 위해 차량의 전면유리 중앙에 설치된 단안카메라를 사용하여 원거리에 있는 차량을 인식하고 추적하는 알고리즘을 제안한다. 차량은 하르(Haar) 특징을 사용하여 탐지하고, 차량바닥에 있는 그림자를 검출하여 차량의 크기와 위치를 판단한다. 인식된 차량의 주변을 ROI(: Region Of Interest)로 설정하여 다음 프레임들에서는 ROI 내부의 차량 그림자를 찾아 추적한다. 이를 통하여 차량의 위치, 상대속도와 이동방향을 예측한다. 실험결과는 100m이상의 거리에서 90%이상의 인식율로 차량을 인식하였다.

가상환경 및 카메라 이미지를 활용한 실시간 속도 표지판 인식 방법 (Real-time Speed Sign Recognition Method Using Virtual Environments and Camera Images)

  • 송은지;김태윤;김효빈;김경호;황성호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.92-99
    • /
    • 2023
  • Autonomous vehicles should recognize and respond to the specified speed to drive in compliance with regulations. To recognize the specified speed, the most representative method is to read the numbers of the signs by recognizing the speed signs in the front camera image. This study proposes a method that utilizes YOLO-Labeling-Labeling-EfficientNet. The sign box is first recognized with YOLO, and the numeric digit is extracted according to the pixel value from the recognized box through two labeling stages. After that, the number of each digit is recognized using EfficientNet (CNN) learned with the virtual environment dataset produced directly. In addition, we estimated the depth of information from the height value of the recognized sign through regression analysis. We verified the proposed algorithm using the virtual racing environment and GTSRB, and proved its real-time performance and efficient recognition performance.

무인 해상 드론용 트윈 세일의 형태와 간격에 관한 연구 (Shape and Spacing Effects on Curvy Twin Sail for Autonomous Sailing Drone)

  • 팜민억;김부기;양창조
    • 해양환경안전학회지
    • /
    • 제26권7호
    • /
    • pp.931-941
    • /
    • 2020
  • 해양데이터를 수집하기 위해 필요한 엔지니어, 연구원 및 과학자를 대신할 수 있는 해양 모니터링 장치인 자율주행보트의 필요성이 대두되고 있다. 이 논문은 자율주행보트의 세일을 개발하기 위한 연구로 곡선형 트윈 세일의 공기역학적인 특성을 수치해석적으로 분석하고 이를 날개 형태의 세일과 성능비교를 통해 곡선형 트윈 세일의 공기 역학적인 성능을 확인하였고, 세일의 간격과 형상에 따른 성능을 비교하였다. 유체 해석을 위한 지배방정식은 Navier - Stokes를 사용하였다. 성능비교 결과 곡선 형 트윈 세일은 날개 형태의 세일과 비교하여 양력, 항력 및 추력 계수가 향상됨을 알 수 있다. 또한, 트윈 세일의 양 날개의 간격은 중요한 변수임을 확인 하였다. 0.035 L, 0.07 L, 0.14 L에서는 스톨로 인해 양력 계수의 감소로 나타났고 0.21 L, 0.28 L, 0.35 L에서는 개선되어 0.28 L에서 최대 양력을 보여준다.

오픈 소스 기반의 정찰 및 탐색용 드론 프로그램 개발 (Development of the Program for Reconnaissance and Exploratory Drones based on Open Source)

  • 채범석;김정환
    • 대한임베디드공학회논문지
    • /
    • 제17권1호
    • /
    • pp.33-40
    • /
    • 2022
  • With the recent increase in the development of military drones, they are adopted and used as the combat system of battalion level or higher. However, it is difficult to use drones that can be used in battles below the platoon level due to the current conditions for the formation of units in the Korean military. In this paper, therefore, we developed a program drones equipped with a thermal imaging camera and LiDAR sensor for reconnaissance and exploration that can be applied in battles below the platoon level. Using these drones, we studied the possibility and feasibility of drones for small-scale combats that can find hidden enemies, search for an appropriate detour through image processing and conduct reconnaissance and search for battlefields, hiding and cover-up through image processing. In addition to the purpose of using the proposed drone to search for an enemies lying in ambush in the battlefield, it can be used as a function to check the optimal movement path when a combat unit is moving, or as a function to check the optimal place for cover-up or hiding. In particular, it is possible to check another route other than the route recommended by the program because the features of the terrain can be checked from various viewpoints through 3D modeling. We verified the possiblity of flying by designing and assembling in a form of adding LiDAR and thermal imaging camera module to a drone assembled based on racing drone parts, which are open source hardware, and developed autonomous flight and search functions which can be used even by non-professional drone operators based on open source software, and then installed them to verify their feasibility.