• Title/Summary/Keyword: Autonomous driving

Search Result 936, Processing Time 0.026 seconds

A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV (UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 )

  • Seonghwan Ryu;Seoyeon Kim;Jiwoo Shin;Taesik Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.18-26
    • /
    • 2024
  • Road surface monitoring is essential for maintaining road environment safety through managing risk factors like rutting and crack detection. Using autonomous driving-based UGVs with high-performance 2D laser sensors enables more precise measurements. However, the increased energy consumption of these sensors is limited by constrained battery capacity. In this paper, we propose a fusion sensor system for efficient surface monitoring with UGVs. The proposed system combines color information from cameras and depth information from line laser sensors to accurately detect surface displacement. Furthermore, a dynamic sampling algorithm is applied to control the scanning frequency of line laser sensors based on the detection status of monitoring targets using camera sensors, reducing unnecessary energy consumption. A power consumption model of the fusion sensor system analyzes its energy efficiency considering various crack distributions and sensor characteristics in different mission environments. Performance analysis demonstrates that setting the power consumption of the line laser sensor to twice that of the saving state when in the active state increases power consumption efficiency by 13.3% compared to fixed sampling under the condition of λ=10, µ=10.

Development of Trip Generation Models for Shared E-Scooter by Service Areas Clustered by Level of Trip Density (서비스 구역 수준별 공유 전동킥보드 통행발생모형 개발)

  • Tai-jin Song;Kyuhyuk Kim;Changhun Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.124-140
    • /
    • 2023
  • The rapid growth in shared E-scooters worldwide has led to many studies on the topic. The results of these studies are still in the early stages, and the main factors affecting trips are being identified. In particular, the development of trip-generation models is very important for transportation planning, and a new transportation mode for developing the models for shared E-scooters is lacking both domestically and internationally. This study aims to develop a trip generation model for shared E-scooters using significant variables by thoroughly reviewing previous studies. The trip characteristics of major service areas and other areas may differ owing to the trip characteristics of the mode. The trip generation models were developed based on the service trip density by dividing the areas by service level. The factors affecting shared E-scooter trips in major service areas included the presence of universities, closeness centrality, and cultural areas, while factors affecting the trips in minor service areas included the presence of universities, betweenness centrality, and trip distance. The developed models provide basic information that can be used to establish transport policies for introducing shared E-scooters in cities in the future.

Vehicle Acceleration and Vehicle Spacing Calculation Method Used YOLO (YOLO기법을 사용한 차량가속도 및 차두거리 산출방법)

  • Jeong-won Gil;Jae-seong Hwang;Jae-Kyung Kwon;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.82-96
    • /
    • 2024
  • While analyzing traffic flow, speed, traffic volume, and density are important macroscopic indicators, and acceleration and spacing are the important microscopic indicators. The speed and traffic volume can be collected with the currently installed traffic information collection devices. However, acceleration and spacing data are necessary for safety and autonomous driving but cannot be collected using the current traffic information collection devices. 'You Look Only Once'(YOLO), an object recognition technique, has excellent accuracy and real-time performance and is used in various fields, including the transportation field. In this study, to measure acceleration and spacing using YOLO, we developed a model that measures acceleration and spacing through changes in vehicle speed at each interval and the differences in the travel time between vehicles by setting the measurement intervals closely. It was confirmed that the range of acceleration and spacing is different depending on the traffic characteristics of each point, and a comparative analysis was performed according to the reference distance and screen angle to secure the measurement rate. The measurement interval was 20m, and the closer the angle was to a right angle, the higher the measurement rate. These results will contribute to the analysis of safety by intersection and the domestic vehicle behavior model.

High Definition Road Map Object usability Verification for High Definition Road Map improvement (정밀도로지도 개선을 위한 정밀도로지도 객체 활용성 검증)

  • Oh, Jong Min;Song, Yong Hyun;Hong, Song Pyo;Shin, Young Min;Ko, Young Chin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.375-382
    • /
    • 2020
  • As the 4th Industrial Revolution era in worldwide, interest in autonomous vehicles is increasing. but due to recent safety issues such as pedestrian accidents and car accidents, as a technical model for this, the demand for 3D HD maps (High Definition maps) is increasing in including lanes, road markings, road information, traffic lights and traffic signs etc. However, since some complementary points have been continuously raised according to demand, It is necessary to collect the opinions of institutions and companies utilizing HD maps and to improve HD maps. This study was conducted by utilizing the results of the contest for usability verification of HD Maps hosted by the National Geographic Information Institute and organized by the Spatial Information Industry Promotion Institute. For this study, we researched HD maps' layers and codes for HD maps object usability to improve HD maps, constructed HD maps object usability items accordingly, and contested usability verification of HD maps according to the items The contestants conducted verification and analyzed the results. As a result, the most frequently used code for each layer was the flat intersection, and the code showing the highest usage rate was a safety sign. In addition, the use rate of the sub-section and height obstacles was 16.67% and 8.88%, respectively, showing a low ratio. In order to utilize HD maps in the future, this study is expected to require research to continuously collect opinions from customers and improve data objects and data models that are actually needed by customers.

Process Governance Meta Model and Framework (프로세스 거버넌스 메타모델과 프레임워크)

  • Lee, JungGyu;Jeong, Seung Ryul
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.63-72
    • /
    • 2019
  • As a sub-concept of corporate or organization governance, business governance and IT governance have become major research topics in academia. However, despite the importance of process as a construct for mediating the domain between business and information technology, research on process governance is relatively inadequate. Process Governance focuses on activities that link business strategy with IT system implementation and explains the creation of corporate core values. The researcher studied the basic conceptual governance models of political science, sociology, public administration, and classified governance styles into six categories. The researcher focused on the series of metamodels. For examples, the traditional Strategy Alignment Model(SAM) by Henderson and Venkatraman which is replaced by the neo-SAM model, organizational governance network model, sequential organization governance model, organization governance meta model, process governance CUBE model, COSO and process governance CUBE comparison model, and finally Process Governance Framework and etc. The Major difference between SAM and neo-SAM model is Process Governance domain inserted between Business Governance and IT Governance. Among several metamodels, Process Governance framework, the core conceptual model consists of four activity dimensions: strategic aligning, human empowering, competency enhancing, and autonomous organizing. The researcher designed five variables for each activity dimensions, totally twenty variables. Besides four activity dimensions, there are six driving forces for Process Governance cycle: De-normalizing power, micro-power, vitalizing power, self-organizing power, normalizing power and sense-making. With four activity dimensions and six driving powers, an organization can maintain the flexibility of process governance cycle to cope with internal and external environmental changes. This study aims to propose the Process Governance competency model and Process Governance variables. The situation of the industry is changing from the function-oriented organization management to the process-oriented perspective. Process Governance framework proposed by the researcher will be the contextual reference models for the further diffusion of the research on Process Governance domain and the operational definition for the development of Process Governance measurement tools in detail.

Demonstration of Disaster Information and Evacuation Support Model for the Safety Vulnerable Groups (안전취약계층을 위한 재난정보 및 대피지원 모델 실증)

  • Son, Min Ho;Kweon, Il Ryong;Jung, Tae Ho;Lee, Han Jun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.465-486
    • /
    • 2021
  • Purpose: Since most disaster information systems are centered on non-disabled people, the reality is that there is a lack of disaster information delivery systems for the vulnerable, such as the disabled, the elderly, and children, who are relatively vulnerable to disasters. The purpose of the service is to improve the safety of the disabled and the elderly by eliminating blind spots of informatization and establishing customized disaster information services to respond to disasters through IoT-based integrated control technology. Method: The model at the core of this study is the disaster alert propagation model and evacuation support model, and it shall be developed by reflecting the behavioral characteristics of the disabled and the elderly in the event of a disaster. The disaster alert propagation model spreads disaster situations collected using IoT technology, and the evacuation support model uses geomagnetic field-based measuring technology to identify the user's indoor location and help the disabled and the elderly evacuate safely. Results: Demonstration model demonstration resulted in an efficient qualitative evaluation of indoor location accuracy, such as the suitability of evacuation route guidance and satisfaction of services from the user's perspective. Conclusion: Disaster information and evacuation support services were established for the safety vulnerable groups of mobile app for model verification. The disaster situation was demonstrated through experts in the related fields and the disabled by limiting it to the fire situation. It was evaluated as "satisfaction" in the adequacy of disaster information delivery and evacuation support, and its functional satisfaction and user UI were evaluated as "normal" due to the nature of the pilot model. Through this, the disaster information and evacuation support services presented in this study were evaluated to support the safety vulnerable groups to a faster disaster evacuation without missing the golden time of disaster evacuation.