• Title/Summary/Keyword: Autonomous cruise control

Search Result 30, Processing Time 0.024 seconds

A Development of the Autonomous Driving System based on a Precise Digital Map (정밀 지도에 기반한 자율 주행 시스템 개발)

  • Kim, Byoung-Kwang;Lee, Cheol Ha;Kwon, Surim;Jung, Changyoung;Chun, Chang Hwan;Park, Min Woo;Na, Yongcheon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.2
    • /
    • pp.6-12
    • /
    • 2017
  • An autonomous driving system based on a precise digital map is developed. The system is implemented to the Hyundai's Tucsan fuel cell car, which has a camera, smart cruise control (SCC) and Blind spot detection (BSD) radars, 4-Layer LiDARs, and a standard GPS module. The precise digital map has various information such as lanes, speed bumps, crosswalks and land marks, etc. They can be distinguished as lane-level. The system fuses sensed data around the vehicle for localization and estimates the vehicle's location in the precise map. Objects around the vehicle are detected by the sensor fusion system. Collision threat assessment is performed by detecting dangerous vehicles on the precise map. When an obstacle is on the driving path, the system estimates time to collision and slow down the speed. The vehicle has driven autonomously in the Hyundai-Kia Namyang Research Center.

Advanced Lane Detecting Algorithm for Unmanned Vehicle

  • Moon, Hee-Chang;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1130-1133
    • /
    • 2003
  • The goal of this research is developing advanced lane detecting algorithm for unmanned vehicle. Previous lane detecting method to bring on error become of the lane loss and noise. Therefore, new algorithm developed to get exact information of lane. This algorithm can be used to AGV(Autonomous Guide Vehicle) and LSWS(Lane Departure Warning System), ACC(Adapted Cruise Control). We used 1/10 scale RC car to embody developed algorithm. A CCD camera is installed on top of vehicle. Images are transmitted to a main computer though wireless video transmitter. A main computer finds information of lane in road image. And it calculates control value of vehicle and transmit these to vehicle. This algorithm can detect in input image marked by 256 gray levels to get exact information of lane. To find the driving direction of vehicle, it search line equation by curve fitting of detected pixel. Finally, author used median filtering method to removal of noise and used characteristic part of road image for advanced of processing time.

  • PDF

A Study on the V2V Safety Evaluation Method of AEB (AEB의 V2V 안전성 평가 방법에 관한 연구)

  • Kwon, Byeong-Heon;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.7-16
    • /
    • 2019
  • There are trying to reduce damage from automobile accident in many countries. In many automobile companies, there have been active study on development of ADAS (Advanced Driver Assistance Systems) for commercialization, in order to reduce damage from automobile accident. ADAS is the system providing convenience and safeness for drivers. Generally, ADAS is composed of ACC (Adaptive Cruise Control), LKAS (Lane Keeping Assist System), and AEB (Autonomous Emergency Braking). AEB of the ADAS, it is an autonomous emergency braking system and it senses potential collide and avoids or degrades it. Therefore AEB plays a significant role in reducing automobile accident rate. However, AEB safety evaluation method is not established not yet. For this reason, this study suggests safety evaluation scenarios with adding cut-in, sensor malfunctioning scenario that scenario domestic street conditions considered as well as original standard AEB scenario of Euro NCAP for establishment of safety evaluation method of AEB. And verifying validity of suggested scenario by comparing the calculated values of the theoretical formulas presented in the previous study with results of the actual vehicle test.

A Study on the Development of Experimental Method for ACC Using Powertrain HILS (파워트레인 HILS를 이용한 차량간격 제어장치의 실험기법 개발에 관한 연구)

  • 백창현;윤원석;장광수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.165-173
    • /
    • 1999
  • HILS system consists of hardwares which are engine and dynamometer and softwares which is vehicle model without the engine. It is well-known that because of engines's nonlinearity it is difficult to describe an engine exactly and not to lose it reality coincidently. But HILS system is the high technology that can compensate this weakness by using a real engine instead of model. The various experiments regarding the ACC which are not normally available for real vehicle tests have been performed by the HILS system. From the results , the HILS system is expected to decrease the experimental accident rate and save costs and time. Compared with simulation, HILS experimental results show similarities and expected to increase road capacity.

  • PDF

A Study on the Simulation Modeling Method of LKAS Test Evalution (LKAS 시험평가의 시뮬레이션 모델링 기법에 관한 연구)

  • Bae, Geon-Hwan;Lee, Seon-bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.57-64
    • /
    • 2020
  • The leading technologies of the ADAS (Advanced Driver Assist System) are ACC (Advanced Cruise Control), LKAS (Lane Keeping Assist System), and AEB (Autonomous Emergency Braking). LKAS is a system that uses cameras and infrared sensors to control steering and return to its running lane in the event of unintentional deviations. The actual test is performed for a safety evaluation and verification of the system. On the other hand, research on the system evaluation method is insufficient when an additional steering angle is applied. In this study, a model using Prescan was developed and simulated for the scenarios proposed in the preceding study. Comparative analyses of the simulation and the actual test were performed. As a result, the modeling validity was verified. A difference between the front wheels and the lane occurred due to the return velocity. The results revealed a maximum error of 0.56 m. The error occurred because the lateral velocity of the car was relatively small. On the other hand, the distance from wheels to the lanes displayed a tendency of approximately 0.5 m. This can be verified reliably.

Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter (Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정)

  • Kim, Moon-Sik;Kim, Chang-Il;Lee, Kwang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.208-214
    • /
    • 2014
  • Vehicle dynamic states used in various advanced driving safety systems are influenced by road geometry. Among the road geometry information, the vehicle pitch angle influenced by road slope and acceleration-deceleration is essential parameter used in pose estimation including the navigation system, advanced adaptive cruise control and others on sag road. Although the road slope data is essential parameter, the method measuring the parameter is not commercialized. The digital map including the road geometry data and high-precision DGPS system such as DGPS(Differential Global Positioning System) based RTK(Real-Time Kinematics) are used unusually. In this paper, low-cost cascade extended Kalman filter(CEKF) based road slope estimation method is proposed. It use cascade two EKFs. The EKFs use several measured vehicle states such as yaw rate, longitudinal acceleration, lateral acceleration and wheel speed of the rear tires and 3 D.O.F(Degree Of Freedom) vehicle dynamics model. The performance of proposed estimation algorithm is evaluated by simulation based on Carsim dynamics tool and T-car based experiment.

Performance Analysis on the IMM-PDAF Method for Longitudinal and Lateral Maneuver Detection using Automotive Radar Measurements (차량용 레이더센서를 이용한 IMM-PDAF 기반 종-횡방향 운동상태 검출 및 추정기법에 대한 성능분석)

  • Yoo, Jeongjae;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.224-232
    • /
    • 2015
  • In order to develop an active safety system which avoids or mitigates collisions with preceding vehicles such as autonomous emergency braking (AEB), accurate state estimation of the nearby vehicles is very important. In this paper, an algorithm is proposed using 3 dynamic models to better estimate the state of a vehicle which has various dynamic patterns in both longitudinal and lateral direction. In particular, the proposed algorithm is based on the Interacting Multiple Model (IMM) method which employs three different dynamic models, in cruise mode, lateral maneuver mode and longitudinal maneuver mode. In addition, a Probabilistic Data Association Filter (PDAF) is utilized as a data association algorithm which can improve the reliability of the measurement under a clutter environment. In order to verify the performance of the proposed method, it is simulated in comparison with a Kalman filter method which employs a single dynamic model. Finally, the proposed method is validated using radar data obtained from the field test in the proving ground.

A Study on Evaluation Method of AEB Test (AEB 시험평가 방법에 관한 연구)

  • Kim, BongJu;Lee, SeonBong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.20-28
    • /
    • 2018
  • Currently, sharp increase of car is on the rise as a serious social problem due to loss of lives from car accident and environmental pollution. There is a study on ITS (Intelligent Transportation System) to seek coping measures. As for the commercialization of ITS, we aim for occupancy of world market through ASV (Advanced Safety Vehicle) related system development and international standardization. However, the domestic environment is very insufficient. Core factor technologies of ITS are Adaptive Cruise Control, Lane Keeping Assist System, Forward Collision Warning System, AEB (Autonomous Emergency Braking) system etc. These technologies are applied to cars to support driving of a driver. AEB system is stop the car automatically based on the result decided by the relative speed and distance with obstacle detected through sensor attached on car rather than depending on the driver. The purpose of AEB system is to measure the distance and speed of car and to prevent accident. Thus, AEB will be a system useful for prevention of accident by decreasing car accident along with the development of automobile technology. This study suggests a scenario to suggest a test evaluation method that accords with domestic environment and active response of international standard regarding the test evaluation method of AEB. Also, by setting the goal with function for distance, it suggests theoretic model according to the result. And the study aims to verify the theoretic evaluation standard per proposed scenario using car which is installed with AEB device through field car driving test on test road. It will be useful to utilize the suggested scenario and theoretical model when conducting AEB test evaluation.

Effect of Experiential Marketing on the Smart Car: Application of Human-Car Interaction Design to a Marketing Paradigm (스마트 자동차의 경험 마케팅 효과에 대한 연구: 인간-자동차 상호작용 디자인의 마케팅 패러다임 적용)

  • Kim, Taeksoo;You, Gaon;Choi, Junho
    • Journal of the HCI Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.17-25
    • /
    • 2017
  • From the vehicle-human interaction perspective, this study investigated the effect of experiential marketing paradigm which considers user experience as main value. We conducted an experiment to compare traditional marketing and experience marketing messages with the smart cruise control and the smart trunk in the context of driving and non-driving context. As a result of the analysis, experience marketing message had higher overall satisfaction than traditional message exposure. Usefulness, usability, and emotion were partially influenced by experience marketing message. The contribution of this study is that the experiential marketing paradigm was applied to automobile UX and practically demonstrated the value of experience design of smart automobile system.

A Study on the Test Evaluation Method of AEB (V2P) Considering the Road Environment in Korea and Euro NCAP Test Protocol v3.0.1 (국내 도로환경과 Euro NCAP VRU Test Protocol v3.0.1을 고려한 AEB(V2P) 시험평가 방법에 관한 연구)

  • Kwon, Byeong-Heon;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.28-38
    • /
    • 2019
  • In the world, traffic accidents and environmental pollution caused by the increase of vehicles are becoming a serious social problem. According to the 2016 data published by the Korea Highway Traffic Authority, Korea owns 49.9 vehicles per 100 people. This is the 28th largest number among the 35 OECD member countries. In addition, the number of deaths from traffic accidents in Korea totaled 4,292, of which 1,714 were caused by traffic accidents involving vehicles and pedestrians. To reduce these human casualties, the automotive industry is constantly working on the development and commercialization of Adaptive Driver Assist System (ADAS). ADAS is the system providing convenience and safeness for drivers. In general, ADAS consists of Autonomous Emergency Braking (AEB), Highway Driving Assist (HDA), Adaptive Cruise Control (ACC), Lane Keeping Assist System (LKAS). Among them, the AEB detects the possibility of collision by the vehicle itself and plays a role of avoiding the collision or reducing the damage through active braking. For such AEB, Euro NCAP has been developing test-evaluation methods for the vulnerable since 2017. Therefore, In this paper analyzes the scenario of Euro NCAP VRU Test Protocol v3.0.1, which will be established in 2020, and proposes test conditions according to the Korean road traffic law. In addition, the reliability of the proposed scenario and test conditions was verified by comparing and analyzing the proposed theoretical evaluation formulas and actual test results.