• Title/Summary/Keyword: Autonomous car

Search Result 191, Processing Time 0.042 seconds

Car-following Motion Planning for Autonomous Vehicles in Multi-lane Environments (자율주행 차량의 다 차선 환경 내 차량 추종 경로 계획)

  • Seo, Changpil;Yi, Kyoungsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.3
    • /
    • pp.30-36
    • /
    • 2019
  • This paper suggests a car-following algorithm for urban environment, with multiple target candidates. Until now, advanced driver assistant systems (ADASs) and self-driving technologies have been researched to cope with diverse possible scenarios. Among them, car-following driving has been formed the groundwork of autonomous vehicle for its integrity and flexibility to other modes such as smart cruise system (SCC) and platooning. Although the field has a rich history, most researches has been focused on the shape of target trajectory, such as the order of interpolated polynomial, in simple single-lane situation. However, to introduce the car-following mode in urban environment, realistic situation should be reflected: multi-lane road, target's unstable driving tendency, obstacles. Therefore, the suggested car-following system includes both in-lane preceding vehicle and other factors such as side-lane targets. The algorithm is comprised of three parts: path candidate generation and optimal trajectory selection. In the first part, initial guesses of desired paths are calculated as polynomial function connecting host vehicle's state and vicinal vehicle's predicted future states. In the second part, final target trajectory is selected using quadratic cost function reflecting safeness, control input efficiency, and initial objective such as velocity. Finally, adjusted path and control input are calculated using model predictive control (MPC). The suggested algorithm's performance is verified using off-line simulation using Matlab; the results shows reasonable car-following motion planning.

A Study on Driver Experience in Autonomous Car Based on Trust and Distrust Model of Automation System (자율주행 자동차 환경에서의 운전자 경험에 대한 연구: 신뢰와 불신 형성 모형 중 심으로)

  • Lee, Jiin-in;Kim, Na-eun;Kim, Jin-woo
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.713-722
    • /
    • 2017
  • Recently technological drive on autonomous vehicle is on the rush. Along with the trend, researches on driver's perspective are increasing. However, previous studies have limitations in terms of study period and rich experience. In this paper, we conducted an ethnographically inspired fieldwork to observe human-autonomous car interaction. We had six participants to ride a prototype autonomous car on the real road for six days. After, we generated trust, distrust factors according to Lee & See's categorization of trust dimension: process, performance, and purpose. We derived eight distrust factors that saliently influences passenger's experience in autonomous vehicle. Our research broadens trust model into autonomous driving context based on real road field study and contributes to automotive community with design guidelines to increase trust toward autonomous vehicle.

Autonomous Parking of Car-Like Mobile Robot Using Docking Formation (도킹 포메이션을 이용한 차량형 이동 로봇의 자율 주차)

  • Kwon, Ji-Wook;Kim, Jin Hyo;Seo, Jiwon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.180-189
    • /
    • 2014
  • For a autonomous parking of unmanned car, this paper proposes a posture regulation algorithm of a car-like mobile robot, which is supported by a docking formation and a feedback linearization control law. Unlike the previous researches based on a path-planning and optimization algorithms, the autonomous car implemented the proposed autonomous parking algorithm can be parked without much computational burden and a high performance processor. Stability of the proposed docking formation and feedback linearization control law are analyzed and performance of the proposed algorithm is shown by implementing to the simulations with six scenarios and an actual car in the experiment place.

Autonomous Parking of a Model Car with Trajectory Tracking Motion Control using ANFIS (ANFIS 기반 경로추종 운동제어에 의한 모형차량의 자동주차)

  • Chang, Hyo-Whan;Kim, Chang-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.69-77
    • /
    • 2009
  • In this study an ANFIS-based trajectory tracking motion control algorithm is proposed for autonomous garage and parallel parking of a model car. The ANFIS controller is trained off-line using data set which obtained by Mandani fuzzy inference system and thereby the processing time decreases almost in half. The controller with a steering delay compensator is tuned through simulations performed under MATLAB/Simulink environment. Experiments are carried out with the model car for garage and parallel parking. The experimental results show that the trajectory tracking performance is satisfactory under various initial and road conditions

Proposal of New Information Processing Model for Implementation of Autonomous Mobile System (자율주행 이동체 시스템 구현을 위한 새로운 정보처리 모델 제안)

  • Jang, Eun-Jin;Kim, Jung-Ihl
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.237-242
    • /
    • 2019
  • Recently, as the public interest in autonomous cars has increased, research and technology development of related companies for the commercialization of autonomous cars have been actively carried out, and the development has progressed to a stage where they are partially but actually used. However, in March 2018, Uber and Tesla cars caused two fatal accidents, and the need for a new system is emerging. Therefore, this paper suggests a new information processing model for autonomous driving car system by supplementing the cause of recognition errors caused by the cause of death by focusing on the accident of autonomous driving car.

Analysis of Autonomous Driving Vehicle and Korea's Competitiveness Strategy (자율주행차 현황분석과 한국의 경쟁력 확보 전략)

  • Yang, Eun-ji;Kang, Su-jin;Kwon, So-ei;Kim, Da-yeon;Kim, Ji-won;Lee, Yu-jeong;Hwang, Hye-jeong;Chang, Young-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.49-54
    • /
    • 2017
  • In Korea, partial self-driving feature is added on Genesis G80, Tivoli 2017, and others, and full implementation is under evaluation. Tesla already completed test for full self-driving car, Tesla Model 'X'. Further adoption of self-driving car in market will bring benefits to the elderly and disabled, meanwhile traffic accident will be decreased. However, related regulations for traffic accident with autonomous car including ethical responsibility is not fully established yet. In addition, security and privacy issue of self-driving cars should be improved as well. In this paper, domestic researches and analysis status on autonomous car will be summarized, and proper activation model will be proposed for the previously described issues.

Implementation of Low-cost Autonomous Car for Lane Recognition and Keeping based on Deep Neural Network model

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.210-218
    • /
    • 2021
  • CNN (Convolutional Neural Network), a type of deep learning algorithm, is a type of artificial neural network used to analyze visual images. In deep learning, it is classified as a deep neural network and is most commonly used for visual image analysis. Accordingly, an AI autonomous driving model was constructed through real-time image processing, and a crosswalk image of a road was used as an obstacle. In this paper, we proposed a low-cost model that can actually implement autonomous driving based on the CNN model. The most well-known deep neural network technique for autonomous driving is investigated and an end-to-end model is applied. In particular, it was shown that training and self-driving on a simulated road is possible through a practical approach to realizing lane detection and keeping.

A Study on Basic Technology for Autonomous-Driving Using RC car (RC카를 이용한 자율주행 기초 기술 연구)

  • Shin, Jae-Ho;Yoo, Jae-Young;Han, Jun-Hee;Hwang, In-Jun;Park, Hyoung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.49-58
    • /
    • 2022
  • With the recent start of the 4th Industrial Revolution, markets related to autonomous driving are rapidly developing. In order to understand the rapidly developed technology trend of autonomous driving technology, we would like to investigate the characteristics and differences of level 0 to level 5 of autonomous driving. The overall configuration, recognition technology, and auxiliary technologies of autonomous vehicles are analyzed, and through this, the structure and algorithm of autonomous driving technology are identified. In addition, by manufacturing a simulated autonomous RC car using an ultrasonic sensor and a camera, the necessity of recognition technology and auxiliary technology is identified.

Issue-Tree and QFD Analysis of Transportation Safety Policy with Autonomous Vehicle (Issue-Tree기법과 QFD를 이용한 자율주행자동차 교통안전정책과제 분석)

  • Nam, Doohee;Lee, Sangsoo;Kim, Namsun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.26-32
    • /
    • 2016
  • An autonomous car(driverless car, self-driving car, robotic car) is a vehicle that is capable of sensing its environment and navigating without human input. Autonomous cars can detect surroundings using a variety of techniques such as radar, lidar, GPS, odometry, and computer vision. Advanced control systems interpret sensory information to identify appropriate navigation paths, as well as obstacles and relevant signage. Autonomous cars have control systems that are capable of analyzing sensory data to distinguish between different cars on the road, which is very useful in planning a path to the desired destination. An issue tree, also called a logic tree, is a graphical breakdown of a question that dissects it into its different components vertically and that progresses into details as it reads to the right.Issue trees are useful in problem solving to identify the root causes of a problem as well as to identify its potential solutions. They also provide a reference point to see how each piece fits into the whole picture of a problem. Using Issue-Tree menthods, transportation safety policies were developed with autonompus vehicle in mind.