• Title/Summary/Keyword: Autonomous Wheelchair

Search Result 23, Processing Time 0.03 seconds

Development of Real-Time Control Architecture for Autonomous Navigation of Powered Wheelchair (전동휠체어의 자유주행을 위한 실시간 제어 구조의 개발)

  • 김병국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.940-946
    • /
    • 2004
  • In this paper, an efficient real-time control architecture for autonomous navigation of powered wheelchair is developed. Since an advanced intelligent wheelchair requires real-time performance, the control software architecture of powered wheelchair is developed under Linux real-time extension Real-time Application Interface (RTAI). A hierarchical control structure for autonomous navigation is designed and implemented using real-time processe and interrupts handling of sensory perception based on slanted surface LRF, emergency handling capability, and motor control with 0.1 msec sampling time. The performance of our powered wheelchair system with the implemented control architecture for autonomous navigation is verified via experiments in a corridor.

A Study on the Priority of Autonomous Driving Service Requirements for the Transportation Vulnerable: Focusing on Wheelchair disabled and Walking disabled Persons (교통약자 자율주행서비스 요구사항에 대한 우선순위 연구: 휠체어 이용 장애인 및 보행 장애인을 중심으로)

  • Seok Hyun Kim;Jeong Ah Jang;Yu Mi Do;Hyun Keun Hong
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.3
    • /
    • pp.39-52
    • /
    • 2024
  • The development of autonomous driving technology is expected to bring about a major change in the mobility rights of the transportation vulnerable. It is very important to identify user requirements in developing autonomous vehicles and service technologies for the transportation vulnerable. User requirements were derived for the wheelchair disabled and the walking disabled. Through focus interviews, a total of 58 requirements were derived for wheelchair-using disabled people and 53 requirements for walking disabled people. A Kano survey was conducted on 33 wheelchair disabled and 34 walking disabled. After that, the quality types of functional requirements in terms of autonomous vehicles and service environment development were analyzed using the Kano model. Priority analysis was conducted on the functions required by the wheelchair disabled and the walking disabled. The results of this study can be used as basic data to determine the priorities of user function requirements in the early stages of autonomous vehicle and service technology development.

Design of Self-localization Based Autonomous Driving Platform for an Electric Wheelchair (자기위치 인식 기반의 자율주행 전동휠체어 플랫폼 개발)

  • Choi, Jung-Hae;Choi, Byung-Jae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.161-167
    • /
    • 2018
  • The improvement of the social environment and the rapid development of medicine are making possible the age of 100. So a great number of countries including Korea are rapidly becoming the aged society or the super aged society. The elderly are accompanied by discomfort and disability. A variety of systems are developed and distributed to overcome them. The electric wheelchair is an electric motorized system for people who can not manipulate a manual wheelchair. In this paper, we propose an autonomous driving platform for an electric wheelchair. Here we use QR (Quick Response) code for self-localization. We also present real test results of the proposed system.

Autonomous Navigation System of Power Wheelchair using Distance Measurement Sensors (거리측정센서를 이용한 자동주행 전동 휠체어 시스템)

  • Lee, Joon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.3
    • /
    • pp.174-182
    • /
    • 2013
  • The power wheelchair is an important and convenient mobility device. The demand of power wheelchair is increasing for assistance in mobility. In this paper we proposed a robotic wheelchair for mobility aid to reduce the burden from the disabled. The main issue in an autonomous wheelchair is the automatic detection and avoidance of obstacles and going to the pre-designated place. The proposed algorithm detects the obstacles and avoids them to drive the wheelchair to the desired place safely with panning scan from sensors of distance measurement and fuzzy control. By this way, the disabled will not always have to worry about paying deep attention to the surroundings and his path.

Autonomous Navigation System for Power Wheelchair System

  • Jung, Moon-Shu;Ahn, Seong-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • The power wheelchair is an important and convenient mobility device. The demand of power wheelchair is increasing for assistance in mobility. In this paper we proposed a robotic wheelchair for mobility aid to reduce the burden from the disabled. The main issue in an autonomous wheelchair is the automatic detection and avoidance of obstacles and going to the pre-designated place. The proposed algorithm detects the obstacles and avoids them to drive the wheelchair to the desired place safely with panning scan from sensors of distance measurement and fuzzy control. By this way, the disabled will not always have to worry about paying deep attention to the surroundings and his path.

  • PDF

Autonomous Wheelchair System Using Gaze Recognition (시선 인식을 이용한 자율 주행 휠체어 시스템)

  • Kim, Tae-Ui;Lee, Sang-Yoon;Kwon, Kyung-Su;Park, Se-Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.91-100
    • /
    • 2009
  • In this paper, we propose autonomous intelligent wheelchair system which recognize the commands using the gaze recognition and avoid the detected obstacles by sensing the distance through range sensors on the way to driving. The user's commands are recognized by the gaze recognizer which use a centroid of eye pupil and two reflection points extracted using a camera with infrared filter and two infrared LEDs. These are used to control the wheelchair through the user interface. Then wheelchair system detects the obstacles using 10 ultrasonic sensors and assists that it avoid collision with obstacles. The proposed intelligent wheelchair system consists of gaze recognizor, autonomous driving module, sensor control board and motor control board. The gaze recognizer cognize user's commands through user interface, then the wheelchair is controled by the motor control board using recognized commands. Thereafter obstacle information detected by ultrasonic sensors is transferred to the sensor control board, and this transferred to the autonomous driving module. In the autonomous driving module, the obstacles are detected. For generating commands to avoid these obstacles, there are transferred to the motor control board. The experimental results confirmed that the proposed system can improve the efficiency of obstacle avoidance and provide the convenient user interface to user.

Autonomous Navigation Power Wheelchair Using Distance Measurement Sensors and Fuzzy Control (거리측정 센서 스캐닝과 퍼지 제어를 이용한 전동 휠체어 자율주행 시스템)

  • Kim, Kuk-Se;Yang, Sang-Gi;Rasheed, M. Tahir;Ahn, Seong-Soo;Lee, Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.329-336
    • /
    • 2008
  • Nowadays with advancement in technology and aging society, the number of disabled citizens is increasing. The disabled citizens always need a caretaker for daily life routines especially for mobility. In future, the need is considered to increase more. To reduce the burden from the disabled, various devices for healthcare are introduced using computer technology. The power wheelchair is an important and convenient mobility device. The demand of power wheelchair is increasing for assistance in mobility. In this paper we proposed a robotic wheelchair for mobility aid to reduce the burden from the disabled. The main issue in an autonomous wheelchair is the automatic detection and avoidance of obstacles and going to the pre-designated place. The proposed algorithm detects the obstacles and avoids them to drive the wheelchair to the desired place safely. By this way, the disabled will not always have to worry about paying deep attention to the surroundings and his path.

  • PDF

Indoor autonomous driving system based on Internet of Things (사물인터넷 기반의 실내 자율주행 시스템)

  • Seong-Hyeon Lee;Ah-Eun Kwak;Seung-Hye Lee;Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.69-75
    • /
    • 2024
  • This paper proposes an IoT-based indoor autonomous driving system that applies SLAM (Simultaneous Localization And Mapping) and Navigation techniques in a ROS (Robot Operating System) environment based on TurtleBot3. The proposed autonomous driving system can be applied to indoor autonomous wheelchairs and robots. In this study, the operation was verified by applying it to an indoor self-driving wheelchair. The proposed autonomous driving system provides two functions. First, indoor environment information is collected and stored, which allows the wheelchair to recognize obstacles. By performing navigation using the map created through this, the rider can move to the desired location through autonomous driving of the wheelchair. Second, it provides the ability to track and move a specific logo through image recognition using OpenCV. Through this, information services can be received from guides wearing uniforms with the organization's unique logo. The proposed system is expected to provide convenience to passengers by improving mobility, safety, and usability over existing wheelchairs.

A Study on the Path-Tracking of Electric Wheelchair Robot (전동휠체어 로봇의 경로추적제어에 관한 연구)

  • Ahn, Kyoung-Kwan;Yoon, Jong-Il;Le, Duy Khoa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1265-1271
    • /
    • 2011
  • These days the number of aged and disabled people is increasing rapidly. But most of the disabled or the aged who have the ability to work, want to engage in economic activities and solve social restrictions as well as their bad financial conditions. This paper concerns about the tracking control of an electric wheelchair robot for welfare vehicle where the seat and electric wheelchair are separated and electric wheelchair robot must be autonomously controlled without the help of assistant. So the aged or the disabled people can drive welfare vehicle by himself by adopting this system. Therefore the concept of both an autonomous driving of electric wheelchair and path tracking robots is required in this system. Finally we suggested fuzzy controller in order to control the path tracking of electric wheelchair robot and compared the capability of the proposed controller with conventional PID controller.