• 제목/요약/키워드: Autonomous Underwater Vehicle

검색결과 216건 처리시간 0.024초

만타형 무인 잠수정의 개발과 실해역 성능시험 (Implementation and field test for autonomous navigation of manta UUV)

  • 고성협;김동희;김준영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.644-652
    • /
    • 2013
  • 본 논문은 만타형 무인잠수정의 개발과 실해역 성능시험에 관한 내용을 다룬다. 먼저 만타형 무인 잠수정의 운동성능을 예측하기 위한 시뮬레이션을 수행하였다. 시뮬레이션 결과를 통해서 만타형 잠수정의 운동성능을 검증하였으며 결과를 바탕으로 테스트베드인 만타형 무인잠수정을 설계하였다. 만타 잠수정은 자세 및 경로의 계측을 위하여 DVL (Doppler Velocity Log), Gyrocompass, GPS, 압력센서 등을 탑재하였으며 운항제어를 위한 추진기와 1개의 수직타 4개의 수평타를 장착하여 3자유도 운동이 가능하다. 실해역에서 운동성능시험과 자율운항 성능시험을 통해 만타형 무인잠수정 시스템을 검증하였다.

Development of a system architecture for an advanced autonomous underwater vehicle, ORCA

  • Choi, Hyun-Taek;Lee, Pan-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1791-1796
    • /
    • 2004
  • Recently, great improvements have been made in developing autonomous underwater vehicles (AUVs) using stateof- the-art technologies for various kinds of sophisticated underwater missions. To meet increasing demands posed on AUVs, a powerful on-board computer system and an accurate sensor system with an well-organized control system architecture are needed. In this paper, a new control system architecture is proposed for AUV, ORCA (Oceanic Reinforced Cruising Agent) which is being currently developed by Korea Research Institute of Ships and Ocean Engineering (KRISO). The proposed architecture uses a hybrid architecture that combines a hierarchical architecture and a behavior based control architecture with an evaluator for coordinating between the architectures. This paper also proposed a sensor fusion structure based on the definition of 4 categories of sensors called grouping and 5-step data processing procedure. The development of the AUV, ORCA involving the system architecture, vehicle layout, and hardware configuration of on-board system are described.

  • PDF

자율무인잠수정 테스트베드 이심이의 개발과 수조시험 (Development and Tank Test of an Autonomous Underwater Vehicle 'ISiMI')

  • 전봉환;박진영;이판묵;이필엽;오준호
    • 한국해양공학회지
    • /
    • 제21권2호
    • /
    • pp.67-74
    • /
    • 2007
  • Maritime and Ocean Engineering Research Institute (MOERI), a branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) named ISiMI (Integrated Submergible for Intelligent Mission Implementation). ISiMI is an AUV platform to satisfy the various needs of experimental test required for development of challenging technologies newly investigated in the field of underwater robot; control and navigational algorithms and software architectures. The main design goal of ISiMI AUV is downsizing which will reduce substantially the operating cost compared to other vehicles previously developed in KORDI such as VORAM or DUSAUV. As a result of design and manufacturing process, ISiMI is implemented to be 1.2 m in length, 0.17 m in diameter and weigh 20 kg in air. A series of tank test is conducted to verify the basic functions of ISiMI in the Ocean Engineering Basin of MOERI, which includes manual control with R/F link, auto depth, auto heading control and a final approach control for underwater docking. This paper describes the implementation of ISiMI system and the experimental results to verify the function of ISiMI as a test-bed AUV platform.

소형무인잠수정(AUV) 이심이의 개발 및 시험 (Development and Trials of an Small Autonomous Underwater Vehicle 'ISiMI')

  • 전봉환;박진영;이판묵;이필엽;이종무;오준호
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.347-350
    • /
    • 2006
  • Maritime and Ocean Engineering Research Institute (MOERI), a branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) named ISiMI(Integrated Submergible for Intelligent Mission Implementation). ISiMI is an AUV platform to satisfy the various needs of experimental test required for development of challenging technologies newly investigated in the field of underwater robot; control and navigational algorithms and software architectures. The main design goal of ISiMI AUV is downsizing which will reduce substantially the operating cost compared to other vehicles previously developed in KORDI such as VORAM or DUSAUV. As a result of design and manufacturing process, ISiMI is implemented to be 1.2m in length, 0.17m in diameter and weigh 20 kg in air. A series of tank test is conducted to verify the basic functions of ISiMI in the Ocean Engineering Basin of MOERI, which includes manual control with R/F link, auto depth, auto heading control and a final approach control for underwater docking. This paper describes the implementation of ISiMI system and the experimental results to verify the function of ISiMi as a test-bed AUV platform.

  • PDF

자이로 도플러 센서와 USBL을 통한 수중체 위치추적 알고리즘개발 (Development of Underwater Vehicle Position Tracking Algorithm by using a Gyro-Doppler Sensor and Ultra Short Base Line)

  • 김덕진;박동원;박연식
    • 한국정보통신학회논문지
    • /
    • 제10권11호
    • /
    • pp.1973-1977
    • /
    • 2006
  • 본 논문에서는 IMU(Inertial Motion Unit), DVL(Doppler Velocity Log), USBL(Ultra Short Base Line) DGPS(Differential Global Positioning System) 등의 센서로부터 취득된 데이터를'융합하여 ROV(Remotely Operated Vehicle)와 AUV(Autonomous Underwater Vehicle)와 같은 수중체의 위치를 지구 전체영역에서 추정하기 위한 기본적인 알고리즘을 다루고 있다. 본 논문에 소개된 알고리즘은 6,000m급 과학 조사용 심해무인잠수정인 해미래[1]의 수중 위치추적에 사용될 예정이다.

확장칼만필터를 이용한 무인잠수정의 3차원 위치평가 (3-D Localization of an Autonomous Underwater Vehicle Using Extended Kalman Filter)

  • 임종환;강철웅
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.130-135
    • /
    • 2004
  • This paper presents a 3-D localization of an autonomous underwater vehicle(AUV). Conventional methods of localization, such as LBL or SBL, require additional beacon systems, which reduces the flexibility and availability of the AUV We use a digital compass, a pressure sensor, a clinometer and ultrasonic sensors for localization. From the orientation and velocity information, a priori position of the AUV is estimated based on the dead reckoning. With the aid of extended Kalman filter algorithm, a posteriori position of the AUV is estimated by using the distance between the AUV and a mother ship on the surface of the water together with the water depth information from the pressure sensor. Simulation results show the possibility of practical application of the method to autonomous navigation of the AUV.

생체모방형 수중로봇의 해양작전 운용개념 및 핵심소요기술 (Applications and Key Technologies of Biomimetic Underwater Robot for Naval Operations)

  • 이기영
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.189-200
    • /
    • 2015
  • This paper gives an overview on the some potential applications and key technologies of biomimetic underwater robot for naval operations. Unlike most manned underwater naval systems, biomimetic underwater robots can be especially useful in near-land or harbour areas due to their ability to operate in shallow water effectively. Biomimetic underwater robot provide advantages in reaching locations that would be difficult or too dangerous for a manned vehicle to reach, as well as providing a level of autonomy that can remove the requirement for dedicated human operator support. Using multiple or schools of underwater robots would provide increased flexibility for navigation, communication and surveillance ability. And it alleviate some of the restrictions associated with speed and endurance design constraints.

Study on Unmanned Hybrid Unmanned Surface Vehicle and Unmanned Underwater Vehicle System

  • Jin, Han-Sol;Cho, Hyunjoon;Lee, Ji-Hyeong;Jiafeng, Huang;Kim, Myung-Jun;Oh, Ji-Youn;Choi, Hyeung-Sik
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.475-480
    • /
    • 2020
  • Underwater operating platforms face difficulties regarding power supply and communications. To overcome these difficulties, this study proposes a hybrid surface and underwater vehicle (HSUV) and presents the development of the platform, control algorithms, and results of field tests. The HSUV is capable of supplying reliable power to the unmanned underwater vehicle (UUV) and obtaining data in real time by using a tether cable between the UUV and the unmanned surface vehicle (USV). The HSUV uses global positioning system (GPS) and ultra-short base line sensors to determine the relative location of the UUV. Way point (WP) and dynamic positioning (DP) algorithms were developed to enable the HSUV to perform unmanned exploration. After reaching the target point using the WP algorithm, the DP algorithm enables USV to maintain position while withstanding environmental disturbances. To ensure the navigation performance at sea, performance tests of GPS, attitude/heading reference system, and side scan sonar were conducted. Based on these results, manual operation, WP, and DP tests were conducted at sea. WP and DP test results and side scan sonar images during the sea trials are presented.

Design and estimation of a sensing attitude algorithm for AUV self-rescue system

  • Yang, Yi-Ting;Shen, Sheng-Chih
    • Ocean Systems Engineering
    • /
    • 제7권2호
    • /
    • pp.157-177
    • /
    • 2017
  • This research is based on the concept of safety airbag to design a self-rescue system for the autonomous underwater vehicle (AUV) using micro inertial sensing module. To reduce the possibility of losing the underwater vehicle and the difficulty of searching and rescuing, when the AUV self-rescue system (ASRS) detects that the AUV is crashing or encountering a serious collision, it can pump carbon dioxide into the airbag immediately to make the vehicle surface. ASRS consists of 10-DOF sensing module, sensing attitude algorithm and air-pumping mechanism. The attitude sensing modules are a nine-axis micro-inertial sensor and a barometer. The sensing attitude algorithm is designed to estimate failure attitude of AUV properly using sensor calibration and extended Kalman filter (SCEKF), feature extraction and backpropagation network (BPN) classify. SCEKF is proposed to be used subsequently to calibrate and fuse the data from the micro-inertial sensors. Feature extraction and BPN training algorithms for classification are used to determine the activity malfunction of AUV. When the accident of AUV occurred, the ASRS will immediately be initiated; the airbag is soon filled, and the AUV will surface due to the buoyancy. In the future, ASRS will be developed successfully to solve the problems such as the high losing rate and the high difficulty of the rescuing mission of AUV.

심해 과학조사용 무인잠수정의 시스템 설계 (System Design of a Deep-sea Unmanned Underwater Vehicle for Scientific Research)

  • 이판묵;이종무;전봉환;홍석원;임용곤
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.243-250
    • /
    • 2002
  • According to Ocean Korea 21, a basic plan established by the Ministry of Maritime Affairs and Fisheries (MOMAF) of Korea in May 2000, Korea Research Institute of Ships and Ocean Engineering (KRISO) proposed a program for the development of a deep-sea unmanned underwater vehicle (UUV) to explore deep sea for scientific purpose. KRISO has launched a project in May 2001 under the support of MOMAF. The deep-sea unmanned underwater vehicle will be applied to scientific researches in deep-sea as well as in shallow water. For operation of underwater vehicles in shallow water near the Korean Peninsula, a special design is required because of strong tidal current. In addition, MOMAF requires the vehicle to be designed for the purpose of long range survey, a long-term observation, and precise works in a specific area. Thus, KRISO has planned to design the system with the functional combination of both ROV and AUV. This paper presents the design of the deep-sea unmanned underwater vehicle.

  • PDF