• Title/Summary/Keyword: Autonomous Underwater Vehicle(AUV)

Search Result 147, Processing Time 0.021 seconds

Mission Management Technique for Multi-sensor-based AUV Docking

  • Kang, Hyungjoo;Cho, Gun Rae;Kim, Min-Gyu;Lee, Mun-Jik;Li, Ji-Hong;Kim, Ho Sung;Lee, Hansol;Lee, Gwonsoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.181-193
    • /
    • 2022
  • This study presents a mission management technique that is a key component of underwater docking system used to expand the operating range of autonomous underwater vehicle (AUV). We analyzed the docking scenario and AUV operating environment, defining the feasible initial area (FIA) level, event level, and global path (GP) command to improve the rate of docking success and AUV safety. Non-holonomic constraints, mounted sensor characteristic, AUV and mission state, and AUV behavior were considered. Using AUV and docking station, we conducted experiments on land and at sea. The first test was conducted on land to prevent loss and damage of the AUV and verify stability and interconnection with other algorithms; it performed well in normal and abnormal situations. Subsequently, we attempted to dock under the sea and verified its performance; it also worked well in a sea environment. In this study, we presented the mission management technique and showed its performance. We demonstrated AUV docking with this algorithm and verified that the rate of docking success was higher compared to those obtained in other studies.

A Neural Network Adaptive Controller for Autonomous Diving Control of an Autonomous Underwater Vehicle

  • Li, Ji-Hong;Lee, Pan-Mook;Jun, Bong-Huan
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.374-383
    • /
    • 2004
  • This paper presents a neural network adaptive controller for autonomous diving control of an autonomous underwater vehicle (AUV) using adaptive backstepping method. In general, the dynamics of underwater robotics vehicles (URVs) are highly nonlinear and the hydrodynamic coefficients of vehicles are difficult to be accurately determined a priori because of variations of these coefficients with different operating conditions. In this paper, the smooth unknown dynamics of a vehicle is approximated by a neural network, and the remaining unstructured uncertainties, such as disturbances and unmodeled dynamics, are assumed to be unbounded, although they still satisfy certain growth conditions characterized by 'bounding functions' composed of known functions multiplied by unknown constants. Under certain relaxed assumptions pertaining to the control gain functions, the proposed control scheme can guarantee that all the signals in the closed-loop system satisfy to be uniformly ultimately bounded (UUB). Simulation studies are included to illustrate the effectiveness of the proposed control scheme, and some practical features of the control laws are also discussed.

Design of Path Tracking Controller for Underactuated Autonomous Underwater Vehicle Using Approach Angle Concept (접근 각도 개념을 이용한 과소 작동기 무인 잠수정의 경로 추적 제어기 설계)

  • Kim, Kyoung-Joo;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.225-231
    • /
    • 2012
  • In this paper, we propose a method for designing the path tracking controller using an approach angle concept for an underactuated autonomous underwater vehicle (AUV). The AUV is controlled by the surge speed and yaw rate: there is no side thruster. To solve this underactuated AUV problem in the path tracking, we introduce an approach angle concept which makes the AUV converge to the reference path. And we design the path tracking controller using the proposed approach angle. To design the path tracking controller, we obtain the new vehicle's error dynamics in the body-fixed frame, and then design the path tracking controller based on Lypunov direct method. Finally, some simulation results demonstrate the effectiveness of the proposed controller.

Structural Design and Analysis of Autonomous Underwater Vehicle by Fiber Reinforced Plastics (FRP에 의한 무인잠수정의 설계와 구조해석)

  • Kim, Yun-Hae;Bae, Sung-Youl;Jo, Young-Dae;Moon, Kyung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.937-942
    • /
    • 2008
  • This research investigated to find out the possibilities of applying FRPs to the AUVs. In this study, two kinds of metal materials, which is one of the popularly used materials for manufacturing AUVs, and 6 kinds of FRP materials were considered. Material properties of FRPs were derived by tensile tests and chemical analysis. Moreover, various types of AUVs were designed by 8 kinds of materials. From structural analysis, we can find out that the weights of AUV by CFRP-Autoclave could be reduced by 60% in comparison with the weights of AUV by Al 7075-T6. Also, 40% weight reduction could be expected compared to the AUV by Ti-6Al-4V. In this result, we could conclude that the material of CFRP-Autoclave have various merits and potentialities as one of the AUV materials.

Motion Control of an AUV Using a Neural-Net Based Adaptive Controller (신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어)

  • 이계홍;이판묵;이상정
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.8-15
    • /
    • 2002
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamic, and the basis function vector of network is constructed according to th AUV's physical properties. A sliding mode control scheme is introduced to attenuate the effect of the neural network's reconstruction errors and the disturbances in AUV's dynamics. Using Lyapunov theory, the stability of the presented control system is guaranteed as well as the uniformly boundedness of tracking errors and neural network's weights estimation errors. Finally, numerical simulations for motion control of an AUV are performed to illustrate the effectiveness of the proposed techniques.

Global Path Planning for an Autonomous Underwater Vehicle in a Vortical Current Field by Using Genetic Algorithm (유전자 알고리즘을 이용한 무인잠수정의 와조류장에서의 전역경로계획)

  • Lee, Ki-Young;Kim, Subum;Song, Chan-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.473-480
    • /
    • 2013
  • The purpose of this paper is to demonstrate that the genetic algorithm can be useful for the global path planning when the obstacles and current field data are given. In particular, the possibilities for a novel type small AUV mission deployment in tidal regions, which experience vortical currents, were examined. Experimental simulations show feasibility and effective in generate the global path regardless of current and obstacles. By choosing an appropriate path in space, an AUV may both bypass adverse currents which are too fast to be overcome by the vehicle's motor and also exploit favorable currents to achieve far greater speeds than motors could otherwise provide, while substantially saving energy.

Motion Control of an AUV Using a Neural-Net Based Adaptive Controller (신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어)

  • 이계홍;이판묵;이상정
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.91-96
    • /
    • 2001
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamics, and a sliding mode control is introduced to attenuate the effects of the neural network's reconstruction errors and the disturbances of AUV's dynamics. The presented controller is consist of three parallel schemes; linear feedback control, sliding mode control and neural network. Lyapunov theory is used to guarantee the asymptotic convergence of trajectory tracking errors and the neural network's weights errors. Numerical simulations for motion control of an AUV are performed to illustrate to effectiveness of the proposed techniques.

  • PDF

Formation Control for Underactuated Autonomous Underwater Vehicles Using the Approach Angle

  • Kim, Kyoung Joo;Park, Jin Bae;Choi, Yoon Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.154-163
    • /
    • 2013
  • In this paper, we propose a formation control algorithm for underactuated autonomous underwater vehicles (AUVs) with parametric uncertainties using the approach angle. The approach angle is used to solve the underactuated problem for AUVs, and the leader-follower strategy is used for the formation control. The proposed controller considers the nonzero off-diagonal terms of the mass matrix of the AUV model and the associated parametric uncertainties. Using the state transformation, the mass matrix, which has nonzero off-diagonal terms, is transformed into a diagonal matrix to simplify designing the control. To deal with the parametric uncertainties of the AUV model, a self-recurrent wavelet neural network is used. The proposed formation controller is designed based on the dynamic surface control technique. Some simulation results are presented to demonstrate the performance of the proposed control method.

New Approach to MAC Protocol for Multiple AUV (수중 Multiple AUV를 위한 MAC 프로토콜 설계)

  • Cho, A-Ra;Park, Jong-Won;Kim, Seung-Geun;Choi, Young-Chol;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.213-216
    • /
    • 2007
  • The paper deals with a approach to underwater acoustic based Ad-hoc communication, which allows major design strategies for Media Access Control (MAC) within a group of the autonomous underwater vehicles(AUV). The proposed MAC aims at deploying AUV-centric star topology, which minimizes overhead of sensor nodes and improves energy-efficiency. Furthermore, that is also well under long and unknown propagation delays of the underwater acoustic medium. The implemented MAC protocol makes it easier to achieve frame synchronization than TDMA due to deploying localized schedule time, in addition to saving energy consumption by letting nodes sleep. It is also superior to MACA and MACAW in terms of propagation delay. This scalable centralized protocol has the potential to serve as a primer for development of MAC protocol for future underwater acoustic based ad-hoc networks.

  • PDF

Study of Design for Convertible ROV (새로운 Convertible ROV의 설계 연구)

  • Choi, Hyeung-Sik;Jeon, Ji-Kwang;Jeong, Sang-Ki;Park, Han-Il;You, Sam-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.451-458
    • /
    • 2012
  • In this paper, the design study of a new convertible six d.o.f underwater robot which can be a ROV or AUV according to underwater work purpose is presented. A structure design about the ROV and the AUV and its design on the control system is presented. In case of the AUV, an analysis on thruster forces in accordance with operating speed has been performed. A sensor fusion board which can proceed various sensor signals to identify correct positions and speeds has been developed and a total control system including EKF(Extended Kalman Filter) has been designed and developed.