• 제목/요약/키워드: Autonomous Traveling

검색결과 48건 처리시간 0.02초

무인FA를 위한 자율주행 로봇의 경로계획 및 실시간 궤적제어에 관한 연구 (A Study on a Path Planning and Real-Time Trajectory Control of Autonomous Travelling Robot for Unmanned FA)

  • 김현근;심현석;황원준
    • 한국산업융합학회 논문집
    • /
    • 제19권2호
    • /
    • pp.75-80
    • /
    • 2016
  • This study proposes a efficient technology to control the optimal trajectory planning and real-time implementation method which can perform autonomous travelling for unmaned factory automation. Online path planning should plan and execute alternately in a short time, and hence it enables the robot avoid unknown dynamic obstacles which suddenly appear on robot's path. Based on Route planning and control algorithm, we suggested representation of edge cost, heuristic function, and priority queue management, to make a modified Route planning algorithm. Performance of the proposed algorithm is verified by simulation test.

자율이동로봇의 영상인식 미로탐색시스템 (Maze Navigation System Using Image Recognition for Autonomous Mobile Robot)

  • 이정훈;강성호;엄기환
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.429-434
    • /
    • 2005
  • In this paper, the maze navigation system using image recognition for autonomous mobile robot is proposed. The proposed maze navigation system searches the target by image recognition method based on ADALINE neural network. The infrared sensor system must travel all blocks to find target because it can recognize only one block information each time. But the proposed maze navigation system can reduce the number of traveling blocks because of the ability of sensing several blocks at once. Especially, due to the simplicity of the algorithm, the proposed method could be easily implemented to the system which has low capacity processor.

동적프로그래밍을 이용한 자율이동로봇의 동작계획 (Motion Planning of Autonomous Mobile Robot using Dynamic Programming)

  • 윤희상;박태형
    • 제어로봇시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.53-60
    • /
    • 2010
  • We propose a motion planning method for autonomous mobile robots. In order to minimize traveling time, a smooth path and a time optimal velocity profile should be generated under kinematic and dynamic constraints. In this paper, we develop an effective and practical method to generate a good solution with lower computation time. The initial path is obtained from voronoi diagram by Dijkstra's algorithm. Then the path is improved by changing the graph and path simultaneously. We apply the dynamic programming algorithm into the stage of improvement. Simulation results are presented to verify the performance of the proposed method.

Secure Cluster Selection in Autonomous Vehicular Networks

  • Mohammed, Alkhathami
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.11-16
    • /
    • 2023
  • Vehicular networks are part of the next generation wireless and smart Intelligent Transportation Systems (ITS). In the future, autonomous vehicles will be an integral part of ITS and will provide safe and reliable traveling features to the users. The reliability and security of data transmission in vehicular networks has been a challenging task. To manage data transmission in vehicular networks, road networks are divided into clusters and a cluster head is selected to handle the data. The selection of cluster heads is a challenge as vehicles are mobile and their connectivity is dynamically changing. In this paper, a novel secure cluster head selection algorithm is proposed for secure and reliable data sharing. The idea is to use the secrecy rate of each vehicle in the cluster and adaptively select the most secure vehicle as the cluster head. Simulation results show that the proposed scheme improves the reliability and security of the transmission significantly.

자율주행이 가능한 무인지게차 시스템에 대한 V2X 활용 (The Utilize V2X about to Autonomous Unmanned Forklift System)

  • 이재웅;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.229-231
    • /
    • 2018
  • 자율주행 차량 기술이 점차 발전해 오면서 점차 산업 현장 및 사고 현장과 같이 인명하고가 많이 일어나는 분야에 자율주행 시스템을 도입한 로봇으로 대처를 많이 해 오고 있다. 이러한 이유로 자율주행시스템을 탑재한 무인이송장치는 사람의 접근이 어려운 유해환경 등에 많이 이용된다. 또한 자율주행 시스템의 도입은 산업현장과 같이 정신없이 움직이는 환경 속에서 일어나는 충돌 사고 및 인명피해를 줄이고, 효율성 있는 업무처리를 도와준다. 또한 자율주행 차량끼리 매인서버로 차량별 주변 환경을 전송하여 매인서버에서 이를 통재하면 더욱 넓은 지역에서 보다 안전하고 신속한 업무처리가 가능하다. 본 논문에서는 자율주행이 가능한 무인지게차 시스템에 대한 V2X 통신을 활용함으로써, 보다 넓은 지역의 지게차들을 통재하여 산업 업무량을 높이며, 인명피해와 재산피해를 줄일 수 있다.

  • PDF

퍼지-뉴럴 네트워크를 이용한 자율 이동로봇의 운항 (Navigation of Autonomous Mobile Robot using Fuzzy Neural Network)

  • 최정원
    • 조명전기설비학회논문지
    • /
    • 제22권4호
    • /
    • pp.19-25
    • /
    • 2008
  • 본 논문은 장애물에 대한 사전 정보를 가지고 있지 않은 미지의 공간에서 장애물의 회피와 지정된 목표점으로 이동할 수 있는 자율이동로봇을 위한 퍼지-뉴럴 네트워크를 이용한 지능제어 알고리즘을 제안하고, 제안된 제어기의 효용성을 모의실험과 실제 로봇의 구동실험을 통하여 검증을 한다. 제시한 지능제어기는 계층구조의 알고리즘으로 로봇이 목표에 도달하기 위한 퍼지 알고리즘과 주행 중 만날 수 있는 장애물들에 대한 회피를 수행하는 퍼지-뉴럴 알고리즘으로 구성된 계층과, 로봇이 이동하면서 만날 수 있는 여러 가지 상황에 따라 장애물 회피동작과 목표점 도달동작을 수행할 수 있도록 두 알고리즘에 적당한 가중치를 부여하는 가중치 퍼지 알고리즘으로 구성되어 있다. 그리고 로봇의 현재 운동정보와 장애물까지의 거리정보를 바탕으로 가중치 퍼지 알고리즘의 출력부 소속도 함수를 조절함으로서 오목한 장애물에 대해서도 장애물 회피 동작을 수행하도록 하였다. 제작된 로봇으로 제시한 알고리즘의 실효성을 검증하였다.

자율주행자동차 PHAROS (Introduction to Autonomous Vehicle PHAROS)

  • 유지환;박장식;;;김혁;송영욱;윤문영;김재석;강전진
    • 제어로봇시스템학회논문지
    • /
    • 제18권8호
    • /
    • pp.787-793
    • /
    • 2012
  • This paper introduces the autonomous vehicle Pharos, which participated in the 2010 Autonomous Vehicle Competition organized by Hyundai-Kia motors. PHAROS was developed for high-speed on/off-road unmanned driving avoiding diverse patterns of obstacles. For the high speed traveling up to 60 km/h, long range terrain perception, real-time path planning and high speed vehicle motion control algorithms are developed. This paper describes the major hardware and software components of our vehicle.

Development of Autonomous Sprayer Considering Tracking Performance on Geometrical Complexity of Ground in Greenhouse

  • Lee, Dong Hoon;Lee, Kyou Seung;Cho, Yong Jin;Lee, Je Yong;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • 제37권5호
    • /
    • pp.287-295
    • /
    • 2012
  • Purpose: Some of the most representative approaches are to apply next generation technologies to save energy consumption, fully automated control system to appropriately maintain environmental conditions, and autonomous assistance system to reduce labor load and ensure operator's safety. Nevertheless, improvement of upcoming method for soil cultured greenhouse has not been sufficiently achieved. Geometrical complexity of ground in protected crop cultivation might be one of the most dominant factors in design of autonomous vehicle. While there is a practical solution fairly enough to promise an accurate travelling, such as autonomous sprayer guided by rail or induction coil, for various reasons including the limitation of producer's budget, the previously developed sprayer has not been widely distributed to market. Methods: In this study, we developed an autonomous sprayer considering travelling performance on geometrical complexity of ground in soil cultured greenhouse. To maintain a stable travelling and to acquire a real time feedback, common wire with 80 mm thick and body frame and sprayer boom. To evaluate performance of the prototype, tracking performance, climbing performance and spraying boom's uniform leveling performance were individually evaluated by corresponding experimental tests. Results: The autonomous guidance system was proved to be sufficiently suitable for accurate linear traveling with RMS as lower than approximately 10 cm from designated path. Also the prototype could climb $10^{\circ}$ of ground's slope angle with 40 kg of water weight. Uniform leveling of spraying boom was successfully performed within $0.5^{\circ}$ of sprayer boom's slope. Conclusions: Considering more complex pathways and coarse ground conditions, evaluations and improvements of the prototype should be performed for promising reliability to commercialization.

자율형 무인운반차를 위한 충돌회피동작의 생성(I) (Collision Avoidance Method for Autonomous Vehicle)

  • 임재국;이동형
    • 산업경영시스템학회지
    • /
    • 제22권50호
    • /
    • pp.33-44
    • /
    • 1999
  • This paper describes the Autonomous Vehicles (AV) which are operated for their own tasks. There are chances of conflict resolution such as sharing the same path which can lead to the risk of a collision. This research represents some ways of negotiating the conflict resolution by generating cooperative actions. Negotiation while traveling the path is accomplished by using priority and by announcing the start time of the task. When there is a risk of collision, the AV tries to dissolve the situation of conflict resolution by concurrently adjusting mutual speed and by performing the algorithm of passing. If the speed of the AV cannot be adjusted, it measures the distance between the counterpart of the AV and an obstacle along the path. Then it judges either to proceed by passing the counterpart of the AV or to turn back after observing the current circumstances. The performance of the algorithm described above was proven by a simulator.

  • PDF

Optimal Underwater Coverage of a Cellular Region by Autonomous Underwater Vehicle Using Line Sweep Motion

  • Choi, Myoung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.1023-1033
    • /
    • 2012
  • An underwater planar covering problem is studied where the coverage region consists of polygonal cells, and line sweep motion is used for coverage. In many subsea applications, sidescan sonar has become a common tool, and the sidescan sonar data is meaningful only when the sonar is moving in a straight line. This work studies the optimal line sweep coverage where the sweep paths of the cells consist of straight lines and no turn is allowed inside the cell. An optimal line sweep coverage solution is presented when the line sweep path is parallel to an edge of the cell boundary. The total time to complete the coverage task is minimized. A unique contribution of this work is that the optimal sequence of cell visits is computed in addition to the optimal line sweep paths and the optimal cell decomposition.