• Title/Summary/Keyword: Autonomous Systems

Search Result 1,581, Processing Time 0.028 seconds

자율주행차량 운전자 모니터링에 대한 동향 및 시사점 (Trends and Implications for Driver Status Monitoring in Autonomous Vehicles)

  • 장미;강도욱;장은혜;김우진;윤대섭;최정단
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.31-40
    • /
    • 2023
  • Given recent accidents involving autonomous vehicles, driver monitoring technology related to the transition of control in autonomous vehicles is gaining prominence. Driver status monitoring systems recognize the driver's level of alertness and identify possible impairments in the driving ability owing to conditions including drowsiness and distraction. In autonomous vehicles, predictive factors for the transition to manual driving should also be included. During traditional human driving, monitoring the driver's status is relatively straightforward owing to the consistency of crucial cues, such as the driver's location, head orientation, gaze direction, and hand placement. However, monitoring becomes more challenging during autonomous driving because of the absence of direct manual control and the driver's engagement in other activities, which may obscure the accurate assessment of the driver's readiness to intervene. Hence, safety-ensuring technology must be balanced with user experience in autonomous driving. We explore relevant global and domestic regulations, the new car assessment program, and related standards to extract requirements for driver status monitoring. This kind of monitoring can both enhance the autonomous driving performance and contribute to the overall safety of autonomous vehicles on the road.

Autonomous Ground Vehicle Technologies Applied to the DARPA Grand Challenge

  • CraneIII, Carl D.;Armstrong Jr., David G.;Torrie, Mel W.;Gray, Sarah A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1126-1130
    • /
    • 2004
  • This paper describes the design, development, and performance testing of an autonomous ground vehicle that was developed to participate in the DARPA Grand Challenge that was held in March 2004. The authors of this paper are members of Team CIMAR which was one of twenty five teams selected by DARPA to participate in a competition to develop an autonomous vehicle that can navigate from near Los Angeles to near Las Vegas at speeds averaging twenty miles per hour. Most of the event was held on open terrain and trails in a rocky desert environment. This paper describes the overall system design and the performance of the system at the event.

  • PDF

인공 면역망과 퍼지 시스템을 이용한 자율이동로봇 주행 (Autonomous Mobile Robot Navigation using Artificial Immune Networks and Fuzzy Systems)

  • 김양현;이동제;이민중;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권9호
    • /
    • pp.402-412
    • /
    • 2002
  • The navigation algorithms enable autonomous mobile robots to reach given target points without collision against obstacles. To achieve safe navigations in unknown environments, this paper presents an effective navigation algorithm for the autonomous mobile robots with ultrasonic sensors. The proposed navigation algorithm consists of an obstacle-avoidance behavior, a target-reaching behavior and a fuzzy-based decision maker. In the obstacle-avoidance behavior and the target-reaching behavior, artificial immune networks are used to select a proper steering angle, make the autonomous mobile robot avoid obstacles and approach a given target point. The fuzzy-based decision maker combines the steering angles from the target-reaching behavior and the obstacle-avoidance behavior in order to steer the autonomous mobile robot appropriately. Simulational and experimental results show that the proposed navigation algorithm is very effective in unknown environments.

Steering Control of Autonomous Vehicle by the Vision System

  • Kim, Jung-Ha;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.91.1-91
    • /
    • 2001
  • The subject of this paper is vision system analysis of the autonomous vehicle. But, autonomous vehicle is one of the difficult topics from the point of view of several constrains on mobility, speed of vehicle and lack of environment information. Therefore, we are application of the vision system so that autonomous vehicle. Vision system of autonomous vehicle is likely to eyes of human. This paper can be divided into 2 parts. First, acceleration system and brake control system for longitudinal motion control. Second vision system of real time lane detection is for lateral motion control. This part deals lane detection method and image processing method. Finally, this paper focus on the integration of tole-operating vehicle and autonomous ...

  • PDF

A MULTIPLE AUTONOMOUS ROBOTS SYSTEM -HARDWARE AND COMMUNICATION

  • Johari, W.A.;Nohira, M.;Yamauchi, Y.;Ishikawa, S.;Kato, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.485-490
    • /
    • 1992
  • This paper describes a hardware structure and a communication system of a multiple autonomous robots system. Many studies have been devoted to the development of a single autonomous robot. It is, however, also necessary to investigate decentralized multiple autonomous robots system in order to make wider use of such robots. We have been studying a multiple autonomous robots system employing two mobile robots. In this paper, problems are overviewed on the developed multiple autonomous robots system from the viewpoint of hardware and communication, and an improved system is presented, which employs a new control strategy of a mobile robot and realizes reliable data communication between host computers.

  • PDF

Real-Time Precision Vehicle Localization Using Numerical Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • 제36권6호
    • /
    • pp.968-978
    • /
    • 2014
  • Autonomous vehicle technology based on information technology and software will lead the automotive industry in the near future. Vehicle localization technology is a core expertise geared toward developing autonomous vehicles and will provide location information for control and decision. This paper proposes an effective vision-based localization technology to be applied to autonomous vehicles. In particular, the proposed technology makes use of numerical maps that are widely used in the field of geographic information systems and that have already been built in advance. Optimum vehicle ego-motion estimation and road marking feature extraction techniques are adopted and then combined by an extended Kalman filter and particle filter to make up the localization technology. The implementation results of this paper show remarkable results; namely, an 18 ms mean processing time and 10 cm location error. In addition, autonomous driving and parking are successfully completed with an unmanned vehicle within a $300m{\times}500m$ space.

도로의 경사도에 따른 자율주행 가속도 추정 모델 (Autonomous Driving Acceleration Estimation Model According to the Slope of the Road)

  • 박경욱;허명선;오영철;한지형;정화현;유병용
    • 대한임베디드공학회논문지
    • /
    • 제16권6호
    • /
    • pp.285-292
    • /
    • 2021
  • Autonomous vehicles are divided into an upper controller that calculates control value through cognitive judgment and a lower controller that appropriately transmits its control value to an actuator. Here, the longitudinal control in a lower controller has a problem as the road slopes due to the property of the Acceleration sensor to output the acceleration as the slope of the device. Therefore, in this paper, a sigmoid function is proposed to determine the slope to compensate for this problem. Through the experiment, Checked performance by comparing the existing table model with the proposed model.

야지환경에서 고속 무인자율차량의 아키텍처 설계 및 구현에 관한 연구 (A Study on the Architecture Design and Implementation for High Speed Autonomous Vehicle in Rough Terrain)

  • 이태형;김준;최지훈
    • 시스템엔지니어링학술지
    • /
    • 제15권2호
    • /
    • pp.1-8
    • /
    • 2019
  • Autonomous vehicles operated in the rough terrain environment must satisfy various technical requirements in order to improve the speed. Therefore, in order to design and implement a technical architecture that satisfies the requirements for speed improvement of autonomous vehicles, it is necessary to consider the overall technology of hardware and software to be mounted. In this study, the technical architecture of the autonomous vehicle operating in the rough terrain environment is presented. In order to realize high speed driving in pavement driving environment and other environment, it should be designed to improve the fast and accurate recognition performance and collect high quality database. and it should be determined the correct running speed from the running ability analysis and the frictional force estimation on the running road. We also improved synchronization performance by providing precise navigation information(time) to each hardware and software.

무인 자율 주행 지게차 구현을 위한 네트워크 기반 분산 접근 방법 (Network-based Distributed Approach for Implementation of an Unmanned Autonomous Forklift)

  • 송영훈;박지훈;이경창;이석
    • 제어로봇시스템학회논문지
    • /
    • 제16권9호
    • /
    • pp.898-904
    • /
    • 2010
  • Unmanned autonomous forklifts have a great potential to enhance the productivity of material handling in various applications because these forklifts can pick up and deliver loads without an operator and any fixed guide. There are, however, many technical difficulties in developing such forklifts including localization, map building, sensor fusion, control and so on. Implementation, which is often neglected, is one of practical issues in developing such an autonomous device. This is because the system requires numerous sensors, actuators, and controllers that need to be connected with each other, and the number of connections grows very rapidly as the number of devices grows. Another requirement on the integration is that the system should allow changes in the system design so that modification and addition of system components can be accommodated without too much effort. This paper presents a network-based distributed approach where system components are connected to a shared CAN network, and control functions are divided into small tasks that are distributed over a number of microcontrollers with a limited computing capacity. This approach is successfully applied to develop an unmanned forklift.

새로운 퍼지 명령 스무딩 개념을 이용한 저가형 비자율주행 이동로봇의 원격제어 (Tele-operation of A Low-cost Un-autonomous Mobile Robot Using A New Fuzzy Command Smoothing Concept)

  • 유봉수;조중선
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.809-815
    • /
    • 2004
  • Researches on mobile robots have been mainly focused on the autonomous navigation and a lot of interesting results have been published so far. Most of applications are, however, fancy, unpractical, and very expensive to be used for 'UN-expensive' purpose. Well-known soccer robot may be an example of unpractical application. Un-autonomous mobile robot has, however, potential for a lot of practical applications. Especially, tele-operation of the un-autonomous mobile robot may the central issue of research. Major research topics for the tele-operated un-autonomous mobile robot include development of a force reflecting joystick for tele-operation and development of a sophisticated algorithm for smooth tele-operation. A new concept named fuzzy command smoothing algorithm is proposed in this paper in order to provide smooth motion to a tele-operated mobile robot. It gives smooth motion command to the mobile robot from possibly abrupt quick turn motion command of the joystick using fuzzy logic. Simulation results verify the usefulness of the proposed algorithm.