• Title/Summary/Keyword: Autonomous System (AS)

Search Result 1,422, Processing Time 0.031 seconds

A Study on the Improvement of Motor Vehicles Safety Certification System According to the Deployment of Autonomous Vehicle (자율주행자동차 상용화에 따른 자동차 안전 인증제도 개선에 관한 연구)

  • Yong Hyuk, Cho;Jeong Ah, An;Sang Hyun, Lee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.106-112
    • /
    • 2022
  • The purpose of this study is to explore ways of improving the motor vehicles safety certification system in preparation for the deployment of Lv.4 or higher autonomous vehicles. In order to effectively achieve the objectives of this study, theoretical and empirical research methodologies were employed, including literature review of prior research, government-published data, etc.; comparative research on legislative cases of other countries regarding motor vehicles safety certification; historical and legal research on domestic systems; legal analysis to explore approaches for improvement, etc. Some argue that the type approval system is needed in preparation for deploying autonomous vehicles, but there are several limitations in moving to the type approval system from the self-certification system currently adopted in Korea. First, there is a possibility that the system may be in conflict with the Korea-U.S. MOU regarding Foreign Motor Vehicles (1988) and the Korea-U.S. FTA (2011); second, there is a risk of undermining the cause of the self-certification system, which is the autonomy of manufacturers; third, the boundary between autonomous vehicles and non-autonomous vehicles is unclear; and fourth, the type approval system may hinder technological competitiveness. On the other hand, considering that the Korea-U.S. FTA and the UNECE IWVTA recognize exceptions to deal with road safety and risks to human health or the environment, and have a pre-certification system for some auto parts such as pressure-resistant containers, it can be said that there is room to introduce the type approval system for supplementation purposes. To improve the motor vehicles safety certification system while ensuring the safety of autonomous vehicles of Lv.4 or higher, the targets of type approval should be defined and the criteria, procedures, etc. for type approval should be established. At the same time, the consistency between motor vehicle-related laws and harmonization with international standards need to be considered.

Development of Autonomous Loading and Unloading for Network-based Unmanned Forklift (네트워크 기반 무인지게차를 위한 팔레트 자율적재기술의 개발)

  • Park, Jee-Hun;Kim, Min-Hwan;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1051-1058
    • /
    • 2011
  • Unmanned autonomous forklifts have a great potential to enhance the productivity of material handling in various applications because these forklifts can pick up and deliver loads without an operator and any fixed guide. Especially, automation of pallet loading and unloading technique is useful for enhancing performance of logistics and reducing cost for automation system. There are, however, many technical difficulties in developing such forklifts including localization, map building, sensor fusion, control, and so on. This is because the system requires numerous sensors, actuators, and controllers that need to be connected with each other, and the number of connections grows very rapidly as the number of devices grows. This paper presents a vision sensorbased autonomous loading and unloading for network-based unmanned forklift where system components are connected to a shared CAN network. Functions such as image processing and control algorithm are divided into small tasks that are distributed over a number of microcontrollers with a limited computing capacity. And the experimental results show that proposed architecture can be an appropriate choice for autonomous loading in the unmanned forklift.

Tunnel lane-positioning system for autonomous driving cars using LED chromaticity and fuzzy logic system

  • Jeong, Jae-Hoon;Byun, Gi-Sig;Park, Kiwon
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.506-514
    • /
    • 2019
  • Currently, studies on autonomous driving are being actively conducted. Vehicle positioning techniques are very important in the autonomous driving area. Currently, the global positioning system (GPS) is the most widely used technology for vehicle positioning. Although technologies such as the inertial navigation system and vision are used in combination with GPS to enhance precision, there is a limitation in measuring the lane and position in shaded areas of GPS, like tunnels. To solve such problems, this paper presents the use of LED lighting for position estimation in GPS shadow areas. This paper presents simulations in the environment of three-lane tunnels with LEDs of different color temperatures, and the results show that position estimation is possible by the analyzing chromaticity of LED lights. To improve the precision of positioning, a fuzzy logic system is added to the location function in the literature [1]. The experimental results showed that the average error was 0.0619 cm, and verify that the performance of developed position estimation system is viable compared with previous works.

An autonomous control framework for advanced reactors

  • Wood, Richard T.;Upadhyaya, Belle R.;Floyd, Dan C.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.896-904
    • /
    • 2017
  • Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

Remote Control Management System for Autonomous Ship (자율운항선박을 위한 원격제어관리시스템)

  • Lee, Kwangil
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.45-51
    • /
    • 2018
  • Autonomous ship has been sportlighted as a core technology for the maritime industry in Industry 4.0 era. Autonomous ship is expeected to improve the safety, reliability, efficiency and environment significantly. For the realization of the autonomous ship, the remote control of the ship is one of the core functionality in addition to the autonomous ship control functionality in a ship. In this paper, we address a autonomous ship control system based on remote control. This paper proposes a remote control autonomous system and standardized ship-to-shore remote control protocol with for open platform. Finally, we implemented the system and tested with a real experiments with the test ship in order to demonstrate the feasibility of the proposed remote control autonomous system.

Strategies for Autonomous MUM-T Defense Industry (자율화 MUM-T 국방산업 전략)

  • Byungwoon Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.56-61
    • /
    • 2023
  • Recently, advancement of AI-enabled autonomous MUM-T combat system and industrial revitalization are rapidly emerging as global issues. However, the Defense Business Act of the Ministry of National Defense in Korea is judged to be somewhat insufficient compared to NATO leading countries in advancement of operation part of a weapon system as MUM-T is centered on a weapon system's own device. We established the concept of AI-enabled autonomous MUM-T to strengthen international competitiveness of complex combat systems such as future global UGV, UAV, and UMS. In addition, NATO and US-centered autonomy, interoperability, and data standardization-based defense AI MUM-T top-level platform construction and operation plan, establishment of a national defense innovation committee such as the National Science and Technology Advisory Council, review and advisory function reinforcement, and additional governance measures are proposed.

Effective Simulation Modeling Formalism for Autonomous Control Systems (자율제어시스템의 효과적인 시뮬레이션 모델링 형식론)

  • Chang, Dae Soon;Cho, Kang H;Cheon, Sanguk;Lee, Sang Jin;Park, SangChul
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.4
    • /
    • pp.973-982
    • /
    • 2018
  • Purpose: The purpose of this study is to develop an effective simulation modeling formalism for autonomous control systems, such as unmanned aerial vehicles and unmanned surface vehicles. The proposed simulation modeling formalism can be used to evaluate the quality and effectiveness of autonomous control systems. Methods: The proposed simulation modeling formalism is developed by extending the classic DEVS (Discrete Event Systems Specifications) formalism. The main advantages of the classic DEVS formalism includes its rigorous formal definition as well as its support for the specification of discrete event models in a hierarchical and modular manner. Results: Although the classic DEVS formalism has been a popular modeling tool, it has limitations in describing an autonomous control system which needs to make decisions by its own. As a result, we proposed an extended DEVS formalism which enables the effective description of internal decisions according to its conditional variables. Conclusion: The extended DEVS formalism overcomes the limitations of the classic DEVS formalism, and it can be used for the effectiveness simulation of autonomous weapon systems.

Development of Autonomous Driving System Verification Environment through Advancement of K-City Virtual Driving Environment (K-City 가상주행환경 고도화를 통한 자율주행시스템 검증 환경 구축)

  • Beenhui Lee;Kwanhoe Huh;Jangu Lee;Namwoo Kim;Jongmin Yoon;Seonwoo Cho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.1
    • /
    • pp.16-26
    • /
    • 2023
  • Recently, the importance of simulation in a virtual driving environment as well as real road-based tests for autonomous vehicle testing is increasing. Real road tests are being actively conducted at K-City, an autonomous driving test bed located at the Korea Automobile Safety Test & Research Institute of the Transportation Safety Authority. In addition, the need to advance the K-City virtual driving environment and build a virtual environment similar to the autonomous driving system test environment in real road tests is increasing. In this study, for K-City of Korea Automobile Safety Test & Research Institute, using detailed drawings and actual field data, K-City virtual driving environment was advanced, and similarity verification was verified through comparative analysis with actual K-City.

LiDAR based Real-time Ground Segmentation Algorithm for Autonomous Driving (자율주행을 위한 라이다 기반의 실시간 그라운드 세그멘테이션 알고리즘)

  • Lee, Ayoung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • This paper presents an Ground Segmentation algorithm to eliminate unnecessary Lidar Point Cloud Data (PCD) in an autonomous driving system. We consider Random Sample Consensus (Ransac) Algorithm to process lidar ground data. Ransac designates inlier and outlier to erase ground point cloud and classified PCD into two parts. Test results show removal of PCD from ground area by distinguishing inlier and outlier. The paper validates ground rejection algorithm in real time calculating the number of objects recognized by ground data compared to lidar raw data and ground segmented data based on the z-axis. Ground Segmentation is simulated by Robot Operating System (ROS) and an analysis of autonomous driving data is constructed by Matlab. The proposed algorithm can enhance performance of autonomous driving as misrecognizing circumstances are reduced.

Model-based Design for Autonomous Defense Systmes (자치적 방어 시스템을 위한 모델베이스기반 설계)

  • 이종근
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.89-99
    • /
    • 1999
  • The major objective of this research is to propose a design architecture for autonomous defense systems for supporting highly intelligent behavior by combining decision, perception, and action components. Systems with such high levels of autonomy are critical for advanced battlefield missions. By integrating a plenty of advanced modeling concepts such as system entity structure, endomorphic modeling, engine-based modeling, and hierarchical encapsulation & abstraction principle, we have proposed four layered design methodology for autonomous defense systems that can support an intelligent behavior under the complicated and unstable warfare. Proposed methodology has been successfully applied to a design of autonomous tank systems capable of supporting the autonomous planning, sensing, control, and diagnosis.

  • PDF