• 제목/요약/키워드: Autonomous GPS

검색결과 189건 처리시간 0.029초

만타형 무인 잠수정의 개발과 실해역 성능시험 (Implementation and field test for autonomous navigation of manta UUV)

  • 고성협;김동희;김준영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.644-652
    • /
    • 2013
  • 본 논문은 만타형 무인잠수정의 개발과 실해역 성능시험에 관한 내용을 다룬다. 먼저 만타형 무인 잠수정의 운동성능을 예측하기 위한 시뮬레이션을 수행하였다. 시뮬레이션 결과를 통해서 만타형 잠수정의 운동성능을 검증하였으며 결과를 바탕으로 테스트베드인 만타형 무인잠수정을 설계하였다. 만타 잠수정은 자세 및 경로의 계측을 위하여 DVL (Doppler Velocity Log), Gyrocompass, GPS, 압력센서 등을 탑재하였으며 운항제어를 위한 추진기와 1개의 수직타 4개의 수평타를 장착하여 3자유도 운동이 가능하다. 실해역에서 운동성능시험과 자율운항 성능시험을 통해 만타형 무인잠수정 시스템을 검증하였다.

최소자승법과 Kalman Filter를 이용한 AUV 의 DGPS 기반 Localization 의 위치 오차 감소 (Reduction of Relative Position Error for DGPS Based Localization of AUV using LSM and Kalman Filter)

  • 엄현섭;김지언;백준영;이민철
    • 한국정밀공학회지
    • /
    • 제27권10호
    • /
    • pp.52-60
    • /
    • 2010
  • It is generally important to get a precise position information for autonomous unmanned vehicle(AUV) to run safely. For getting the position of AUV, the GPS has been using to navigation in a vehicle. Though it is useful to finding a position, it is difficult to precisely control a trajectory of the AUV due to large measuring error which may reach over 10 meters. Therefore to apply AUV it needs to compensate for the error. This paper proposes a method to more precisely localize AUV using three low-cost differential global positioning systems (DGPS). The distance errors between each DGPS are minimized as using the least square method (LSM) and the Kalman filter to eliminate a Gaussian white noise. The selected DGPS is cheaper and easier to set up than the RTK-GPS. It is also more precise than the general GPS. The proposed method can compensate the relatively position error according to stationary and moving distance of the AUV. For evaluating the algorithm by simulation, the DGPS signal with the Gaussian white noise to any points is generated by the AR model and compared with the measurement signal. It is confirmed that the proposed method can effectively compensate the position error as comparing with the measurement signal. The compensated position signal can be used to localize and control the AUV in the road.

원격 정보처리를 이용한 자율주행 트랙터 시스템의 개발 (Development of an Autonomous Tractor System Using Remote Information Processing)

  • 조도연;조성인
    • Journal of Biosystems Engineering
    • /
    • 제25권4호
    • /
    • pp.301-310
    • /
    • 2000
  • An autonomous tractor system was developed and its performance was evaluated. The system consisted of a tractor system of and a remote control station. The tractor and the remote control station communicated each other via wireless modems. The tractor had a DGPS(differential global positioning system), sensors, a controller and a modem. The DGPS collected position data and the tractor status was estimated. The information of tractor status and sensors was transferred to the remote control station. Then, the control station determined the control data such as steering angles using a fuzzy controller. The fuzzy controller used the information from the DGPS, sensors, and GIS(geographic information system) data. The control data were obtained by remote signal processing at the control station The control data for autonomous operation were transferred to the tractor controller. The performances of an autonomous tractor were evaluated for various speeds, different initial positions and different initial headings. About 1.3 seconds of time lag was occurred in transferring the tractor status data and the control data. Compensation the time lag, about 27cm deviation was observed at the speed of 0.5m/s and 37cm at the speed of 1m/s. Error caused mainly by the time lag and it would be reduced by developing a full-duplex radio module for controlling the remote tractor.

  • PDF

실도로 주행 데이터 기반 차선변경 주행 특성 분석 (Lane Change Driving Analysis based on Road Driving Data)

  • 박종철;채흥석;이경수
    • 자동차안전학회지
    • /
    • 제10권1호
    • /
    • pp.38-44
    • /
    • 2018
  • This paper presents an analysis on driving safety in lane change situation based on road driving data. Autonomous driving is a global trend in vehicle industry. LKAS technologies are already applied in commercial vehicle and researches about lane change maneuver have been actively studied. In autonomous vehicle, not only safety control issue but also imitating human driving maneuver is important. Driving data analysis in lane change situation has been usually dealt with ego vehicle information such as longitudinal acceleration, yaw rate, and steering angle. For this reason, developing safety index according to surrounding vehicle information based on human driving data is needed. In this research, driving data is collected from perception module using LIDAR, radar and RT-GPS sensors. By analyzing human driving pattern in lane change maneuver, safety index that considers both ego vehicle and surrounding vehicle state by using relative velocity and longitudinal clearance has been designed.

정적 장애물 회피를 위한 경로 계획: ADAM III (Path Planning for Static Obstacle Avoidance: ADAM III)

  • 최희재;송봉섭
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.241-249
    • /
    • 2014
  • This paper presents a path planning algorithm of an autonomous vehicle (ADAM III) for collision avoidance in the presence of multiple obstacles. Under the requirements that a low-cost GPS is used and its computation should be completed with a sampling time of sub-second, heading angle estimation is proposed to improve performance degradation of its measurement and a hierarchical structure for path planning is used. Once it is decided that obstacle avoidance is necessary, the path planning consists in three steps: waypoint generation, trajectory candidate generation, and trajectory selection. While the waypoints and the corresponding trajectory candidates are generated based on position of obstacles, the final desired trajectory is determined with considerations of kinematic constraints as well as an optimal condition in a term of lateral deviation. Finally the proposed algorithm was validated experimentally through field tests and its demonstration was performed in Autonomous Vehicle Competition (AVC) 2013.

다중 차량센서 기반 도로주변환경 분석 및 모니터링 플랫폼 연구 (Study about Road-Surrounding Environment Analysis and Monitoring Platform based on Multiple Vehicle Sensors)

  • 장봉주;임상훈;김현정
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1505-1515
    • /
    • 2016
  • The age of autonomous vehicles has come according to development of high performance sensing and artificial intelligence technologies. And importance of the vehicle's surrounding environment sensing and observation is increasing accordingly because of its stability and control efficiency. In this paper we propose an integrated platform for efficient networking, analysis and monitoring of multiple sensing data on the vehicle that are equiped with various automotive sensors such as GPS, weather radar, automotive radar, temperature and humidity sensors. From simulation results, we could see that the proposed platform could perform realtime analysis and monitoring of various sensing data that were observed from the vehicle sensors. And we expect that our system can support drivers or autonomous vehicles to recognize optimally various sudden or danger driving environments on the road.

한국형 가동헬기 임무탑재장비 요구항법성능 구현 (Required Navigation Performance Implementation of Mission Equipment Package for Korean Utility Helicopter)

  • 김성우;이병화;오우섭
    • 한국군사과학기술학회지
    • /
    • 제14권5호
    • /
    • pp.798-804
    • /
    • 2011
  • A number of navigation improvements are envisaged : Differential GPS - WAAS, LAAS, and Performance Based Navigation. The GPS receiver verifies the integrity(usability) of the signals received from the GPS constellation through a process called receiver autonomous integrity monitoring(RAIM) to determine if a satellite is providing corrupted information. This paper describe the RAIM function and Performance-Based Navigation implementation of Mission Equipment Package(MEP) for Korean Utility Helicopter.

WLAN과 GPS 센서를 이용한 이동로봇의 자율주행 (Autonomous Navigation of a Mobile Robot using WLAN and GPS Sensors)

  • 김기민;김재오;장기흥;정구민;안현식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1810_1811
    • /
    • 2009
  • 자율주행 로봇은 자신위치와 장애물의 위치 등 주변 환경을 인지하여 원하는 지점까지 스스로 이동 및 임무 수행이 가능한 로봇 이다. 목표위치를 탐색하기 위하여 GPS 및 초음파 센서를 이용하여 이동 방향 설정 및 주변 장애물 위치를 파악할 수 있도록 하였다. 특히, WLAN을 이용하여 이동 로봇에 대한 위치 정보의 설정 및 위치 데이터의 교신이 가능하도록 하였고 이동로봇을 이용한 실제 실험을 통하여 원하는 위치 탐색과 장애물 회피가 효과적으로 수행됨을 확인한다.

  • PDF

Performance Analysis on GPS RAIM in the Post SA Era

  • Choi, Jae-Won;Lee, Jang-Gyu;Park, Chan-Gook;Jee, Gyu-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.56.4-56
    • /
    • 2001
  • Using GPS in the navigation systems such as aviation, maritime and land applications, integrity is considered importantly with accuracy for safety. Integrity monitoring performed in the GPS receiver itself is Receiver Autonomous Integrity Monitoring (RAIM) and need not an independent ground monitoring station. RAIM algorithm uses redundant information when more than four satellites are visible and makes consistency checks between measurement information to alarm users whether the system is operating out of its specified performance limits. Selective Availability (SA) that was used to protect the security interests of the U.S. and its allies by globally denying the full accuracy of the civil system was turned off on May 1, 2000 ...

  • PDF

차량 정밀 측위용 이중대역 GPS 안테나 설계 (Design of a Vehicle-Mounted GPS Antenna for Accurate Positioning)

  • 느팜;정재영
    • 한국전자통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.145-150
    • /
    • 2016
  • 자율주행 차량 구현에 있어 차량의 위치에 대한 정확한 정보가 실시간으로 제공되어야 한다. 이동기준국 차분 측위 기술은 차량에 복수의 안테나에서 수신한 신호의 위상차를 통해 정밀 측위 정보를 생성하는 기술로, 이를 위해 차량의 평평하고 넓은 루프를 접지면으로 하는 이중대역 및 이중 원형편파 안테나 개발이 필수적이다. 본 논문에서 제안하는 안테나는 GPS L1과 L2 주파수 대역에서 공진을 일으키는 이중대역 안테나로써, 기존 안테나와 달리 급전부가 안테나 측면에 위치하여 복수의 안테나를 필요로 하는 시스템에 적합하다. 안테나 설계안은 중요 파라미터들의 이론값을 토대로 모델링한 초기 모델을 3D 전파시뮬레이션 소프트웨어를 이용해 최적화하는 방법으로 도출하였다. 최적화된 안테나의 시뮬레이션값과 측정값을 분석한 결과, L1과 L2에서 대역폭 6.1%와 3.7%, 축비 1% 이상임을 확인하였다. 안테나 크기는 $73mm{\times}73mm{\times}6.4mm$로 소형 구조의 장점을 갖췄다.