• Title/Summary/Keyword: Autonomous Flight

Search Result 158, Processing Time 0.043 seconds

A Study on the Improvement of Searching Performance of Autonomous Flight UAVs Based on Flocking Theory (플로킹 이론 기반 자율정찰비행 무인항공기의 탐색성능 향상에 관한 연구)

  • Kim, Dae Woon;Seak, Min Jun;Kim, Byoung Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.419-429
    • /
    • 2020
  • In conducting a mission to explore and track targets using a number of unmanned aerial vehicles(UAVs), performance for that mission may vary significantly depending on the operating conditions of the UAVs such as the number of operations, the altitude, and what future flight paths each aircraft decides based on its current position. However, studies on the number of operations, operating conditions, and flight patterns of unmanned aircraft in these surveillance missions are insufficient. In this study, several types of flight simulations were conducted to detect and determine targets while multiple UAVs were involved in the avoidance of collisions according to various autonomous flight algorithms based by flocking theory, and the results were presented to suggest a more efficient/effective way to control a number of UAVs in target detection missions.

Design and Flight Test of Autonomous Landing Approach Algorithm for UAV (무인 항공기의 자동 착륙 접근 알고리즘 설계 및 비행시험)

  • Jeong, Minjeong;Ryu, Han-Seok;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.458-464
    • /
    • 2013
  • This paper presents an algorithm for autonomous landing approach of a unmanned aerial vehicle. The main purpose of the autonomous landing approach in this study is to help a safe landing at night. From any initial position of the aircraft when this function is engaged, a flight path command is generated from the initial position. The shortest combination of an initial circular arc, a straight line segment, and a final circular arc is chosen for the flight path that will lead the aircraft to one end of runway for a landing. The algorithm is initially validated through numerous simulations with various initial conditions of aircraft. Then it is successfully validated through a number of flight tests.

Intelligent Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle (수중비행체의 자율제어를 위한 지능형 장애물회피 알고리즘)

  • Kim, Hyun-Sik;Jin, Tae-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.635-640
    • /
    • 2009
  • In real system application, the obstacle avoidance system for the autonomous control of the underwater flight vehicle (UFV) operates with the following problems: it has local information because the sonar can only offer the obstacle information in a local detection area, it requires a continuous control input because the system that has reduced acoustic noise and power consumption is necessary, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent obstacle avoidance algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance of the proposed algorithm, the obstacle avoidance of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application.

Nonlinear Formation Guidance Law with Robust Disturbance Observer

  • Shin, Hyo-Sang;Kim, Tae-Hun;Tahk, Min-Jea;Hwang, Tae-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.30-36
    • /
    • 2009
  • Many formation guidance laws have been proposed for VAV formation flight. Since most autonomous formation flight methods require various active communication links between the vehicles to know motion information of other vehicles, damage to the receiver or the transmitter and communication delay are critical problem to achieve a given formation flight mission. Therefore, in this point of view, the method that does not need an inter-vehicle communication is preferred in the autonomous formation flight. In this paper, we first summarize the formation guidance law without an inter-vehicle communication using feedback linearization and sliding mode control proposed in previous study. We also propose the modified formation guidance law with robust disturbance observer, which can provide significantly better performance than previously mentioned guidance law in case that other vehicles maneuver with large accelerations. The robust disturbance observer can estimate uncertainties generated by acceleration of leader vehicle. By eliminating the uncertainties using the estimated uncertainties, VAVs are able to achieve the tight formation flight. The performance of the proposed approach is validated by numerical simulations.

Guidance and Control Algorithm for Waypoint Following of Tilt-Rotor Airplane in Helicopter Flight Mode (틸트로터 항공기의 경로점 추종 비행유도제어 알고리즘 설계 : 헬리콥터 비행모드)

  • Ha, Cheol-Keun;Yun, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.207-213
    • /
    • 2005
  • This paper deals with an autonomous flight guidance and control algorithm design for TR301 tilt-rotor airplane under development by Korea Aerospace Research Institute for simulation purpose. The objective of this study is to design autonomous flight algorithm in which the tilt-rotor airplane should follow the given waypoints precisely. The approach to this objective in this study is that, first of all, model-based inversion is applied to the highly nonlinear tilt-rotor dynamics, where the tilt-rotor airplane is assumed to fly at helicopter flight mode(nacelle angle=0 deg), and then the control algorithm, based on classical control, is designed to satisfy overall system stabilization and precise waypoint following performance. Especially, model uncertainties due to the tiltrotor model itself and inversion process are adaptively compensated in a simple neural network(Sigma-Phi NN) for performance robustness. The designed algorithm is evaluated in the tilt-rotor nonlinear airplane in helicopter flight mode to analyze the following performance for given waypoints. The simulation results show that the waypoint following responses for this algorithm are satisfactory, and control input responses are within control limits without saturation.

Development of the compact Integrated Flight Control Computer (소형 통합형 비행조종컴퓨터 개발)

  • Chang, SungHo;Koo, SamOk;Park, JuWon
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-21
    • /
    • 2008
  • A compact, light-weight, integrated flight control computer(IFCC) for small unmanned autonomous vehicles is developed. Its design objective is to produce an all in one avionics system which includes the navigation sensor, data link, attitude sensors and air data sensors. The initial phase of ground and flight tests are performed to verify the prototype IFCC, showing promising results. The high potential of its application is expected.

  • PDF

3D Costmap Generation and Path Planning for Reliable Autonomous Flight in Complex Indoor Environments (복합적인 실내 환경 내 신뢰성 있는 자율 비행을 위한 3차원 장애물 지도 생성 및 경로 계획 알고리즘)

  • Boseong Kim;Seungwook Lee;Jaeyong Park;Hyunchul Shim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.337-345
    • /
    • 2023
  • In this paper, we propose a 3D LiDAR sensor-based costmap generation and path planning algorithm using it for reliable autonomous flight in complex indoor environments. 3D path planning is essential for reliable operation of UAVs. However, existing grid search-based or random sampling-based path planning algorithms in 3D space require a large amount of computation, and UAVs with weight constraints require reliable path planning results in real time. To solve this problem, we propose a method that divides a 3D space into several 2D spaces and a path planning algorithm that considers the distance to obstacles within each space. Among the paths generated in each space, the final path (Best path) that the UAV will follow is determined through the proposed objective function, and for this purpose, we consider the rotation angle of the 2D space, the path length, and the previous best path information. The proposed methods have been verified through autonomous flight of UAVs in real environments, and shows reliable obstacle avoidance performance in various complex environments.

Autonomous Formation Flight Tests of Multiple UAVs (다수 무인항공기의 자동 편대비행 시험)

  • Song, Yong-Kyu;Heo, Chang-Hwan;Lee, Sang-Jun;Kim, Jung-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.264-273
    • /
    • 2010
  • In this work, autonomous formation flight tests of multiple UAVs are experimentally studied. After a guidance and control system for a UAV is designed and tested, PID formation controller for follower UAV is tested using longitudinal and lateral distance feedback. It is shown that more stable and efficient formation guidance system is obtained by using position and attitude of the leader aircraft, which is exploited to calculate virtual waypoint for follower. In order to improve transient response during turn, part of roll command of the leader is added to the guidance command. Finally, autonomous formation flight test results of 3 UAVs are shown by using the best guidance algorithm suggested.

Design of 6-DOF Attitude Controller of the UAV Simulator's Hovering Model

  • Keh, Joong-Eup;Lee, Mal-Young;Kim, Byeong-Il;Chang, Yu-Shin;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.969-974
    • /
    • 2004
  • For a maneuvering unmanned autonomous helicopter, it is necessary to design a proper controller of each flight mode. In this paper, overall helicopter dynamics is derived and hovering model is linearized and transformed into a state equation form. However, since it is difficult to obtain parameters of stability derivatives in the state equation directly, a linear control model is derived by time-domain parametric system identification method with real flight data of the model helicopter. Then, two different controllers - a linear feedback controller with proportional gains and a robust controller - are designed and their performance is compared. Both proposed controllers show outstanding results by computer simulation. These validated controllers can be used to autonomous flight controller of a real unmanned model helicopter.

  • PDF

Development and Estimation of Low Price-Small-Autopilot UAS for Geo-spatial Information Aquisition (지형정보획득용 저가 소형 자동항법 UAS개발 및 평가)

  • Han, Seung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1343-1351
    • /
    • 2014
  • Recent technological advances in wireless networks and microelectromechanical systems (MEMS) have led to the development of different types of mini-UAVs and their utilizations in various ways. This study endeavors to develop a low-cost mini-UAV with autonomous flight capability, in order to obtain geospatial information of a small or medium-sized area, and also assess its flight stability by comparing the predetermined flight paths against the actual flight paths. Based on a post-development flight test, stable flight has been proven achievable as follows: the maximum endurance speed is 1 hour, the flying distance is 50km, the horizontal accuracy of flight paths is about ${\pm}6{\sim}8m$, and the altitude accuracy is about ${\pm}8m$. Therefore, it is deemed that high-resolution images which can be utilized for geospatial information are obtainable. This indicates that a UAV flying at an altitude of 200m can acquire images across a $2km{\times}3km$ area on the ground within 25 minutes, which validates its high usability for obtaining high-solution images at low altitudes in the future.