• Title/Summary/Keyword: Autonomous Architecture

Search Result 349, Processing Time 0.028 seconds

Experimental research on the autonomous mobile robotics

  • Yuta, Shin'ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.17-17
    • /
    • 1996
  • An experimental research is a useful approach for realizing autonomous mobile robots to work in real environment. We are developing an autonomous mobile robot platform named "Yamabico" as a tool for experimental real world robotics research. The architecture of Yamabico is based on the concept of centralized decision making and functionally modularization. Yamabico robot has two level structure with behavior and function levels, and its hardware and software are functionally distributed for providing incremental development and good maintenancibility. We are using many Yamabico robots in our laboratory to realize the robust navigation technology for autonomous robots. The methodology for experimental and task-oriented approach of mobile robotics will be presented. And some experimental results of real world navigation in indoor and outdoor environment will be shown. be shown.

  • PDF

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (자율주행 이동로봇의 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.155-162
    • /
    • 2003
  • We propose a new technique far real-tine controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Caussian function as a unit function in the fuzzy neural network. and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-foray. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

Real-Time Control for Autonomous Cruise of Mobile Robot Using Fuzzy Neural Network (퍼지신경망을 이용한 자율주행 이동로봇의 실시간 제어)

  • 정동연;이우송;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1697-1700
    • /
    • 2003
  • We propose a new technique for real-time controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

  • PDF

Autonomous Agents and Event Programming (자율개체와 이벤트 프로그래밍)

  • 조은상
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.124-127
    • /
    • 1998
  • One of the eventual goals of VR research is to provide valuable experiences to the participants. In this work, we view that the content of experience is composed of a sequence of events, and develop algorithms authoring those events. Event authoring can be realized by controlling agents in VE in two different modes: (1) the autonomous mode, in which the agent exhibit autonomous behaviors based on the current world status and its own personality, and (2) the event mode, in which the behaviors generated form the autonomous mode is further controlled to meet the needs of the experiment. We define the event authoring language, so that the authors can design experiments by writing event-programs. Then the architecture of event execution manager is described, which is the heart of event-program execution. prove the effectiveness of our approach by showing results of several experiments.

  • PDF

Autonomous Wall-Following of Wheeled Mobile Robots using Hybrid Control Approach (차륜형 이동로봇의 자율 벽면-주행을 위한 하이브리드 제어)

  • Lim, Mee-Seub;Lim, Joon-Hong;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3105-3107
    • /
    • 1999
  • In this paper, we propose a new approach to autonomous wall-following of wheeled mobile robots using hybrid control system. The hybrid control approach IS introduced to the motion control of nonholonomic mobile robots in the Indoor navigation problems. In hybrid control architecture, the discrete states are defined by the user-defined constraints, and the reference motion commands are specified In the abstracted motions. The hybrid control system applied to motion planning and autonomous navigation with obstacle avoidance In indoor navigation problem. Simulation results show that it is an effective method for the autonomous navigation in indoor environments.

  • PDF

Autonomous swimming technology for an AUV operating in the underwater jacket structure environment

  • Li, Ji-Hong;Park, Daegil;Ki, Geonhui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.679-687
    • /
    • 2019
  • This paper presents the autonomous swimming technology developed for an Autonomous Underwater Vehicle (AUV) operating in the underwater jacket structure environment. To prevent the position divergence of the inertial navigation system constructed for the primary navigation solution for the vehicle, we've developed kinds of marker-recognition based underwater localization methods using both of optical and acoustic cameras. However, these two methods all require the artificial markers to be located near to the cameras mounted on the vehicle. Therefore, in the case of the vehicle far away from the structure where the markers are usually mounted on, we may need alternative position-aiding solution to guarantee the navigation accuracy. For this purpose, we develop a sonar image processing based underwater localization method using a Forward Looking Sonar (FLS) mounted in front of the vehicle. The primary purpose of this FLS is to detect the obstacles in front of the vehicle. According to the detected obstacle(s), we apply an Occupancy Grid Map (OGM) based path planning algorithm to derive an obstacle collision-free reference path. Experimental studies are carried out in the water tank and also in the Pohang Yeongilman port sea environment to demonstrate the effectiveness of the proposed autonomous swimming technology.

Implementation of Hybrid Deliberative/Reactive Control Architecture for Autonomous Navigation of a Mobile Robot in Dynamic Environments (동적 환경에서 이동로봇의 자율주행을 위한 혼합 심의/반응 제어구조의 구현)

  • Nam Hwa-Sung;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.154-160
    • /
    • 2006
  • Instantaneous reaction and intelligence are required for autonomous mobile robots to achieve multiple goals in the unpredictable and dynamic environments. Design of the appropriate control architecture and clear definitions of systems are needed to construct and control these robots. This research proposes the hybrid deliberative/reactive control architecture which consists of three layers and uses the method of software structure design. The highest layer, Deliberative Layer makes the overall run-time schedule for navigation and/or manipulation, and the middle layer, Task Execution Layer carries out various missions. The lowest layer, Reactive Layer enables a robot to react rapidly in the dynamic environment and controls the mechanical devices concurrently. This paper proposes independent system supervisors called Manager to reuse the modules so that the Manager supports common use of the system and multi-processing tasks. It is shown that the mobile robot based on the proposed control scheme can perform the basic navigation and cope with the dynamic obstacles reasonably well.

Blockchain for the Trustworthy Decentralized Web Architecture

  • Kim, Geun-Hyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • The Internet was created as a decentralized and autonomous system of interconnected computer networks used for data exchange across mutually trusted participants. The element technologies on the Internet, such as inter-domain and intra-domain routing and DNS, operated in a distributed manner. With the development of the Web, the Web has become indispensable in daily life. The existing web applications allow us to form online communities, generate private information, access big data, shop online, pay bills, post photos or videos, and even order groceries. This is what has led to centralization of the Web. This centralization is now controlled by the giant social media platforms that provide it as a service, but the original Internet was not like this. These giant companies realized that the decentralized network's huge value involves gathering, organizing, and monetizing information through centralized web applications. The centralized Web applications have heralded some major issues, which will likely worsen shortly. This study focuses on these problems and investigates blockchain's potentials for decentralized web architecture capable of improving conventional web services' critical features, including autonomous, robust, and secure decentralized processing and traceable trustworthiness in tamper-proof transactions. Finally, we review the decentralized web architecture that circumvents the main Internet gatekeepers and controls our data back from the giant social media companies.

Indoor Environment and Characteristics and Satisfaction of Users of Senior Centers in Wanju County (완주군 경로당의 실내환경과 이용자들의 특성 및 만족도)

  • Jeong, In-Soo;Meng, Xiangwei
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.19 no.1
    • /
    • pp.23-34
    • /
    • 2017
  • The purpose of this paper is to suggest the preliminary data for the improvement of the senior centers' indoor environment and the upcoming progress located in rural areas. In wanju county, 81.8% of seniors were enrolled in senior centers, and used the facility everyday. Also, most of the users tended to use the facilities between 12 a.m. and 6 p.m. The majority of users had lunch at the senior centers. The facilities of most senior centers were in poor condition, and some had their restroom outdoor. Also, most senior centers are exposed to high concentrations of carbon dioxide during winter. During this season, the thermal environment in the restroom was bad. However, the users' level of the facilities' satisfaction was positive. Senior centers have been operating the facilities with difficulties, due to the low financial support from the local autonomous organization. The indoor temperature in most centers, especially, was above $30^{\circ}C$ during summer on account of lack of funding for airconditioning. Therefore, it could be recommended that the local autonomous entity start regular check-ups and repairs for the poor indoor environment and facilities, with more financial support and active supervision of the management.

Teleoperation System of a Mobile Robot over the Internet (인터넷을 이용한 이동로봇의 원격 운용 시스템)

  • Park, Taehyun;Gang, Geun-Taek;Lee, Wonchang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.270-274
    • /
    • 2002
  • This paper presents a teleoperation system that combines computer network and an autonomous mobile robot. We control remotely an autonomous mobile robot with vision over the Internet to guide it under unknown environments in the real time. The main feature of this system is that local operators need a web browser and a computer connected to the communication network and so they can command the robot in a remote location through the home page. The hardware architecture of this system consists of an autonomous mobile robot, workstation, and local computers. The software architecture of this system includes the client part for the user interface and robot control as well as the server part for communication between users and robot. The server and client systems are developed using Java language which is suitable to internet application and supports multi-platform. Furthermore. this system offers an image compression method using JPEG concept which reduces large time delay that occurs in network during image transmission.