A g o BtE (08R AT =P 1998117 ¥F N

g A S} olWlE =2 1e)w

Q
= &

*16(:)]/&4

M

Autonomous Agents and Event Programming

"Eun-Sang Cho,

Hyeongseok Ko

Human Animation Center

School of Electrical Engineerin

<

g, Seoul National University
g]:

One of the eventual goals of VR research is to provide valuable experiences to the participants.

In this work, we view that the content of experience is composed of a sequence of events, and

develop algorithms for authoring those events.

Event authoring can be realized by controlling

agents in VE in two different modes: (1) the autonomous mode, in which the agent exhibit
autonomous behaviors based on the current world status and its own personality, and (2) the

event mode, in which the behaviors generated from the autonomous mode is further controlled to

meet the needs of the experiment.

We define the event authoring language, so that the authors

can design experiments by writing event-programs. Then the architecture of event execution

manager is described, which is the heart of event-program execution.

prove the effectiveness of

our approach by showing results of several experiments.

1 Introduction

This paper presents algorithms for generating
autonomous agents which are capable of
intelligent interactions with the participants and
organizing events which can be achieved by
controlling the agents. This research was
originated from driving simulation, Therefore
examples in the following discussion are taken
from driving simulation. However, we believe
that the result can be applied to other applications
as well.

The goal of our driving simulation is not a
fast walk-through on the empty roads, but we
like to produce interesting events along the way,
so that the participants get valuable lessons
which can be costly on the actual roads. If the
simulation runs long enough, the ambient carsl4]

will produce all the situations that should be
experienced by the subject car. In this case,
however, we have no direct control over the

situation flow. We don't know how long it will
take for the subject car to go through all the
elements originally planned in the experiment, or
some elements may occur repeatedly. On the
other hand, we may choose to make the program

actively create critical events by controlling the
cars around the subject car., We call the flow of

events event-program, and the process that
realizes such flow event authoring{7].
In this paper, we propose novel ideas to

implement autonomous agents and control those
agents to realize desired event—program. We
define each agent as a software module. For
event authoring, we define a language called
Event Authoring lLanguage (EAL), and its
semanticsl),

; iAgemll lAgeth . .E/\gcnln} {

IC T

Event Execution Manager
{EEM)

_{ interpreted)
1 Patabase } t

Event Reafizative Part

Language Part

Figure 1: Configuration of the Whole System

2 Related Work
It is not surprising that firm theoretical
fundamentals of event authoring have not been

1. We developed a compiler for EAL.

- 124 -

da A B0 Bt 98T A& h Y

Commands or Quertes frov

Waekd Status Event Fxccwtion Maneger

Cranonond / World Stutus

Inierpreter Interpretation

Kvent Mode Autonomous M. Reactive Retuieior N
{F.n-nl(hn Mudule "[t‘x«uﬁ.n Mod.H Medule 1 Execution

Porvunafity - Right Iuceensd i
- o Phasieat

Figure 2: The Architecture of Autonomous Agent

established yet, because VR is a new field of
study and the idea of event authoring started
recently. However, Perlin and Goldberg{i0] have
studied the Improv whose goal is to give rich
interactions to agents. And, Blumberg and
Galyean[2] showed impressive results, They
made the agent composed of three layers and
could achieve the properties of both autonomy and
directability. The Iowa Driving Simulator (IDS)
project[6][5131[111[8] in the University of lowa
has much resemblance with our study. The
project team made a car as a set of complex
states and let the behavior controller concern with
the transitions between the states directly.
Besides above researchers, others also have done
much works on the autonomous agents and the
event authoring.[9](1]

3 Architecture
Our event authoring system consists of two parts
. the language part and event realization part. In
the language part, the EAL compiler parses an
event-program written in EAL and produces a
database that is directly accessible from the event
realization part. The event realization part
consists of the agents and event execution
manager (EEM).

An EAL file starts by listing the agents
involved in the events, and then describes the
preconditions and events that constitute the

content of the event-program. The event
execution manager (EEM) is the heart of the
event-program exXecution. EEM can send

commands or information queries to agents.
Then agents execute the commands or answers
the queries.

4 Modeling Autonomous Agents

The agents should be equipped with basic
capabilities, so that the event execution manager
can control them by supplying minimum amount
of commands. The model should be general, but

A 1998117 BE e

at the same time it should have a room for
diversity.

We subdivide the agent model into three
hierarchical layers as shown in Figure 2: the
interpretation, execution, and physical layers

4.1 The Interpretation Layer

The interpretaion layer recognizes the world
status, and Interprets incoming commands
according to the current context, and sends the
information to the execution layer. Whenever a
different type of agent is introduced in the
simulation, the EEM does not need to be
reprogrammed. Instead, the new type of agent
should follow the common protocol which is
cxpected by the EEM and pre—existing agent
modules.

4.2 The Execution Layer

The execution layer, which functions like the
human brain, receives the commands translated
by interpretation layer, and determines a sequence
of actions that fulfills the given commands, and
sends the resulting sequence to the physical layer
for animation and visualization. Executive layer
is composed of three modules as shown in Figure
2

* Autonomous Mode Execution Module (AMEM):
The execution layer is in the autonomous
mode when there is no external command.

* Event Mode Execution Module (EMEM): The
execution layer goes into the event mode when
the agent’s behavior needs to be controlled to
rnn an event-program,

* Reactive Behavior Module (RBM): RBM
modifies the action sequence produced from
the above two to prevent imminent accidents.

4.3 Physical Layer

The physical layer is placed in the lowest level of
agent system. It takes charge of motor level
movements, or compute the actual position of the
cars considering the vehicle dynamics. The
physical layer consists of several modules, each of
which implements the different skills of the agent.

5 Event Authoring

In the previous section, we have explained the
architecture of autonomous agent. Now we
present the main result of our study, the event
authoring algorithm. The agent architecture
described in Section 4 enables us to develop an
event authoring system which is simple, effective,
and easy to use.

- 125 -

Al Beol et 'BF AU

5.1 Event Execution Manager

The event execution manager (EEM) is the heart
of event execution program. We design the EEM
using a state machine. But, the states are
managed in different ways from classical state
machines, or Cremer et al.’s HCSMI[3]. The
EEM creates a state when the state is needed
and if the state is no more used, the EEM
destroys it. In addition, the EEM is designed so
that multiple states are activated at the same
time. This feature allows the topology of the
state machine to be dynamically changed based
on execution result,

The content of a state is composed of
predicates and conditions for state transition and
the information of predicates and state transition
comes from the event authoring language. More
details of EEM follows in Section 5.2.

Due to the data abstraction in the
interpretation layer of the agent architecture, EEM
can be kept simple. The EEM doesn’t need to
care about the meanings of data. Instead, the
EEM sends the signals to agents and leaves the
agents to take appropriate actions. This makes
the EEM handle variety of agents and
event-programs without any modification.

5.2 Event Authoring Language

The event authoring language (EAL) 1s defined to
facilitate event-program creation. The EAL has
its own syntax and semantics. Below is a short
example. The meaning of this example will be
explained in the subsequent sections.

Agent car0t {
mdel = car:
max_speed = 1.0;
carelessness = 0, 1.

}

Agent human01 {
model = human:

}

Event Program s 01 {
Precondition {

achieve(subject, NULL, LOCATE, r1, 4, 0.3);
achieve(car0l, subject, BACKWARD, 10):
achieve(human01, NULL, LOCATE, -250,0,-10,0,0,-1);
next_event event_ 1.
}
Event event 1 {
do(car01, subject, FORWARD, 5).
do(human01, NULL, STOP):
next_event {
next_event_name event_2:
condition(car0l, subject, FORWARD, 20):
condition(car0l, subject, RIGHT, 0).

=¥ 3 1998117 Heoetw

}
Event event 2 {
do(human0], NMILL, 0):
do(car01, NULL, DECSPEED, 0.02, C.2):
}
Fail {
condition(human0l, subject, COLLISION):
condition(subject, car0i, COLLISION):
}
Success {

duration = 60;
condition({car0l, NULL, LOCATE, r&501).
condition(car0l, subject, FORWARD):

}

Defining Participating Agents
At first, the agents participating in the events
should be listed.

Preconditions

The EEM must first arrange the agents and other
entities in the VE into a situation before starting
an event-program. For example, to start an
event-program in which a car passes the subject
car. The car should be first placed at the behind
of the subject car.

Precondition is wused to specify how to
arrange the agents. Precondition consists of
several predicates and branching destination. For
example, the predicate achieve(subject, NULL,
LOCATE, rl, 4, 0.3) in the above example tells
that the subject car must be located on the fourth
lane of the road ri. If all the conditions are
satisfied, the EEM goes to next_event.(in the
above example, event_1)

5.2.3 Events
Events define the actual content of an
event—program which are executed when the
preconditions are all satisfied. An Event is
defined by a sequence of do predicates and
next_event(s).

For example, on receiving do(car0l, subject,
FORWARD, 5) as a command, car0l tries to go in
front of the subject car and maintain the distance
about 5 meters from the subject car. If car0l is
located in the behind of the subject car, it will
increase its speed and pass the subject car.

If all conditions are satisfied, EEM prepares to
g0 to the next event.

5.2.4 Fail and Success

To determine whether an event-program is
executed as the author originally intended, Success
and Fail conditions are specified.

6 Experiment

- 126 -

DA B oI 'BFAT SN =EH 198117 HF AR

QOur event authoring algorithm was implemented
on Silicon Graphics Indigo2 R4400 workstation
with Maximum Impact graphics. We applied the
algorithm to the driving simulation. In this
section, we will show two examples produced by
our EAL.

6.1 Example 1: Competitive Passing

(Sketched in Figure 3) This example shows the
situation in which a car passes the subject car
and then, a pedestrian steps into a road. It is
reported that drivers tend to increase its speed
when they are passed by other cars. These
tendency can lead the subject car to hit the
pedestrian. The event-program of this has been
listed in Section 5.2.

6.2 Example 2: Line Encroachment

(Sketched in Figure 4) On a two lane roads (one
lane for each direction), a bus runs very slowly
blocking the subject car. In this case, the subject
car may be tempted to encroach the center line
and pass the bus. But, the EEM sends a number
of cars in the other lane to make the pass a
tough job.

7 Conclusion and Future Work

In this paper, new architectures for autonomous
agents and event authoring system were
proposed. To compromise behaviors of the agent
in autonomous mode and event mode, we
organized the architecture of the agent into three
layers: the interpretation, execution, and physical
layers. These agents are controlled by receiving
predicates from the event execution manager.
This approach enables the event execution
manager to handle a variety of agents and
guarantees the correct execution of
event-programs.

Most significant contribution of this paper is
that we invented an event authoring language
which is simple, easy to use, powerful, and the
language is an open solution for constructing
event-programs.

In the future, we will expand the event
authoring language for describing fuzzy situations.

8 Acknowledgment

This work is supported by Creative Research
Initiatives of the Korean Ministry of Science and
Technology.

Reference

[1] Ronald C. Arkin. Integrating behavioral, perceptual,
and world knowledge in reactive navigation.
pages 105-122, 1990.

[2] Bruce M. Blumberg and Tinsley A. Galyean.

r2

T
isubject

Bk

3 i
; Lspby i
5 ";‘ .“.'-‘; i r28

Figure 4: Diagram
for Example2

Figure 3: Diagram for
Examplel

Multi-level direction of autonomous creatures for
real-time virtual environments. In the
Proceedings of SIGGRAPH 95, pages 47-54,
August 1995,

[3] James Cremer and Stuart Hansen. Hierarchical,
concurrent state machines for behavior modeling
and scenario control. December 1994.

[4] James Cremer, Joseph Kearney, and Hyeongseok
Ko. Simulation and scenaric support for virtual
environments. Computer & Graphics,
20(2):199-206, April 1996. Special Issue on
“Techniques for Virtual Environments’’.

[5] James Cremer and Joseph K. Kearney. Scenario
authoring for virtual environments. In
Proceedings of IMAGE VII Conference, Tucson,
USA, June 1994.

(6] James Cremer and Yiannis Papelis. The software
architecture for scenario control in the iowa
driving simulator. In Proceedings of Computer
Generated Forces and Behavioral Representation
Conference, Orlando, USA, May 1994.

[7] James F. Cremer, Joseph K. Kearney, Yiannis
Papelis, and Richard Romano. The software
architecture for scenaric control in the Ilowa
Driving Simulator. In Proc 4th Computer
Generated Forces and Behavioral Representation
Conference, Orlando, FL, May 1994.

[8} J. Kuhl, D. Evans, Y. Papelis, R. Romano, and G.

Watson. The iowa driving simulator - an
immersive research environment. pages 35-41,
July 1995.

[9] Pattie Maes. Designing autonomous agents: Theory
and practice from biology to engineering and
back. pages 1-2, 1990.

[10] Ken Perlin and Athomas Goldberg. Improv: A
system for scripting interative actors in virtual
worlds. In Proceedings o SIGGRAPH
Conference, pages 205-216, New Orleans, USA,
August 1996.

[11] John A. Biggs Rod Deyo and Pete Doenges.
Getting graphics in gear! Graphics and dynamics
in driving simulation. In Proceedings of
SIGGRAPH Conference, pages 317-326, Atlanta,
USA, August 1983,

- 127 -

