• Title/Summary/Keyword: Automotive noise

Search Result 670, Processing Time 0.024 seconds

An Experimental Study on the Squeal Noise Generation due to Dynamic Instability of Brake Pad (브레이크 패드의 동적 불안정성에 따른 스퀼 소음 발생 원인의 실험적 연구)

  • Cho, Sangwoon;Lim, Byoungduk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.520-526
    • /
    • 2016
  • Squeal noise is a typical brake noise that is annoying to both passengers and pedestrians. Its frequency range is fairly wide from 1 kHz to 18 kHz, which can be distressful to people. The brake squeal noise occurs due to various mechanisms, such as the mode coupling of the brake system, self-excited vibration, unstable wear, and others. In this study, several parameters involved in the generation of a squeal noise are investigated experimentally by using a brake noise dynamometer. The speed, caliper pressure, torque, and friction coefficient are measured as functions of time on the dynamometer. The contact pressure and temperature distributions of the disc and the pad are also measured by using a thermal imaging camera and a pressure mapping system. As a result of the simultaneous measurement of the friction coefficient and squeal amplitude as functions of the velocity, it is found that the onset of the squeal may be predicted from the ${\mu}-v$ curve. It is also found that a non-uniform contact pressure causes instability and, in turn, a squeal. Based on the analysis results, design modifications of the pad are suggested for improved noise characteristics.

BSR Test method for Vehicle Seat using Excitation and Operation Durability Test (차량 시트 가진 및 작동 내구 BSR 시험법 연구)

  • Choi, Hoil;Kang, Jaeyoung;Park, Junghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2436-2441
    • /
    • 2015
  • BSR noise from automobiles is largely issued in recent as an emotional quality. This study describes the two test methods for determining BSR noise occurred in automotive seat system. First, the sine sweep test is found to be an effective excitation method for determining BSR noise with high frequency. Second, BSR operation test is introduced in such a way that BSR noise during operation of seat height system is measured by several accelerometer at each 800 cycles until 6400 cycles. The periodic noise signal is captured during one cycle after many cycles of operation. Two test method presented in this paper can be analyzed more efficiently BSR noise of the seat.

Development of Correlation FXLMS Algorithm for the Performance Improvement in the Active Noise Control of Automotive Intake System under Rapid Acceleration (급가속시 자동차 흡기계의 능동소음제어 성능향상을 위한 Correlation FXLMS 알고리듬 개발)

  • Lee, Kyeong-Tae;Shim, Hyoun-Jin;Aminudin, Bin Abu;Lee, Jung-Yoon;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.551-554
    • /
    • 2005
  • The method of the reduction of the automotive induction noise can be classified by the method of passive control and the method of active control. However, the passive control method has a demerit to reduce the effect of noise reduction at low frequency (below 500Hz) range and to be limited by a space of the engine room. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used the LMS (Least-Mean-Square) algorithm because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, When the Filtered-X LMS (FXLMS) algorithm is applied to an ANC system. However, the convergence performance of LMS algorithm goes bad when the FXLMS algorithm is applied to an active control of the induction noise under rapidly accelerated driving conditions. Thus Normalized FXLMS algorithm was developed to improve the control performance under the rapid acceleration. The advantage of Normalized FXLMS algorithm is that the step size is no longer constant. Instead, it varies with time. But there is one additional practical difficulty that can arise when a nonstationary input is used. If the input is zero for consecutive samples, then the step size becomes unbounded. So, in order to solve this problem. the Correlation FXLMS algorithm was developed. The Correlation FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. In this paper, the performance of the Correlation FXLMS Is presented in comparison with that of the other FXLMS algorithms based on computer simulations.

  • PDF

Study Concerning Preference for Noise Quality of Automotive Horn for Improvement of Perceived Quality and Improvement of New Noise Metric (감성 품질 향상을 위한 자동차 Horn의 선호 음질에 관한 연구 및 음질 요소 개발)

  • Kang, Hee-Su;Lee, Sang-Kwon;Shin, Tae-Jin;Jung, Ki-Woong;Park, Dong-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.141-149
    • /
    • 2015
  • In this study, there is an investigation about the sound quality of automotive horn that attached to luxury sedans. In order to define a questionnaire of horn sound quality the factor analysis is conducted. Ten automotive horns are selected for this research and ten passenger cars(nine is luxury sedan and one economy class car). Luxury is used for the questionnaire as an attribute for the sound quality of car horn. The interior noises for ten test cars are recorded and used for the subjective analysis of car horn sound. In the paper, new sound metric for the car horn sound is presented. The new sound metric is used for the objective sound index for the prediction of subjective sound quality of car horn.

Development of Hybrid Method for the Prediction of Internal Flow-induced Noise and Its Application to Throttle Valve Noise in an Automotive Engine

  • Cheong, Cheol-Ung;Kim, Sung-Tae;Kim, Jae-Heon;Lee, Soo-Gab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4E
    • /
    • pp.183-196
    • /
    • 2003
  • General algorithm is developed for the prediction of internal flow-induced noise. This algorithm is based on the integral formula derived by using the General Green Function, Lighthill's acoustic analogy and Curl's extension of Lighthill's. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve are compared with actual measurements. This illustrative computation shows that the current method penn its generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.

OPTIMAL DESIGN OF THE MULTIPLAYER DAMPING MATERIALS USING EQUIVALENT MODELING

  • Hur, D.J.;Lee, D.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • The viscoelastic layer material is widely used to control the noise and vibration characteristics of the panel structure. This paper describes the design technology of the effective vibration damping treatment using the concept of the equivalent parameter of viscoelastic layer materials. Applying the equivalent parameter concepts based on theories of shell, it is possible to simulate the finite element analysis of damping layer panel treatments on the vibration characteristics of the structure. And it is achieved the reduced computational cost and the optimal design of topological distribution for the reduction of vibration effect.

Effective application of insulations and deadeners improving the vehicle interior noise (차실내 소음 개선을 위한 차음재 및 제진재의 효과적 적용)

  • 이정권;김인동;이영섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.68-78
    • /
    • 1992
  • Vibration and vibro-acoustic characteristics of body panels enclosing the vehicle interior cabin are tested and analyzed for effective application of sound proofing materials. A set of deadener and insulation packages are proposed based on the experimentally evaluated and categorized contributions of noise radiating panels. The suggested packages are applied to a prototype vehicle, and a refined acoustic quality is achieved. A systematic experimental procedure proposed in this study can be a good tool in tuning the acoustic quality of prototype vehicles within a limited development period.

  • PDF

Development of Tubular Shaft for Reduction of Booming Noise in Vehicle Interior (차량 부밍 소음 저감을 위한 중공축 개발)

  • 고강호;국형석;이재형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.203-208
    • /
    • 2002
  • In order to reduce the booming noise caused by first bending mode of a drive shaft, this paper proposes a simulation program for prediction of the bending mode frequency of any tubular shaft. This program consists of a pre-processor for modeling of geometrical shape of the drive shaft with boundary conditions of various joints, a processor for constructing of global finite element matrices using beam elements and an eigen-solver based on MATLAB program. Using this simulation program, the effective and accurate FE model far a shaft attached to vehicle can be obtained by aid of database for stiffness of each joint. Thus the resonance frequencies and mode shapes of a shaft can be calculated accurately. Because the effect of the resonance on interior noise can be verified, more improved shaft will be proposed at the early stage of design.