• 제목/요약/키워드: Automotive engine cam

검색결과 31건 처리시간 0.02초

REDUCTION OF HIGH FREQUENCY EXCITATIONS IN A CAM PROFILE BY USING MODIFIED SMOOTHING SPLINE CURVES

  • Kim, D.J.;Nguyen, V.T.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.59-66
    • /
    • 2007
  • High frequency excitation terms in a cam profile can excite vibration of a cam follower system. In this paper, modified smoothing spline curves are used to reduce the high frequency terms. The essential difference between the proposed method and other existing approaches is its ability to make the principal cam motions smooth while still exactly satisfying boundary conditions of follower displacement, velocity and acceleration. The boundary values usually depend on the ramp properties of a cam. Our method, thus, allows designers to smooth the existing cam motion without any damages on its ramp areas. Because the ramp height, velocity and acceleration are maintained exactly, more radical smoothing is possible. An example shows that the proposed method can be a powerful tool of cam profile smoothing, which removes high frequency components in the cam profile excitations without any changes in ramp properties.

2차 캠 중심 이동형 연속가변밸브 구동기구의 기구학 해석 (Kinematic Analysis of a Continuously Variable Valve Actuation Mechanism with Movable Second Cam Center)

  • 김도중;김용현
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.7-15
    • /
    • 2009
  • This paper introduces a new variable valve actuation mechanism with movable second cam center. Valve lift and open duration can be continuously varied according to engine speed and load conditions. A new method to analyze the kinematic relations between the first and second cam profiles and valve motion are also introduced. Because of rocker motion of the second cam, conventional motion conversion program could not be used in this problem. An example shows continuous variations of valve motion and adequate ramp incorporation throughout all valve lift modes. Valve acceleration profile at the high lift mode is similar to that of conventional valvetrains. Contact geometry analysis of the mechanism gives basic information on the load conditions between the components.

Hermite 곡선을 이용한 자동차 엔진 캠 형상의 최적 설계에 관한 연구 (A Study on the Optimal Design of Automotive Cam Profiles using Hermite Curve)

  • 김도중;김원현
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.129-140
    • /
    • 1998
  • A numerical method is proposed to optimize automotive cam profiles. An acceleration curve of a cam follower motion is described by Hermite spline curves. Because of the intrinsic characteristics of the Hermite curve, it is possible to design an acceleration curve with arbitrary shape. Design variables in the optimization problem are location of control points which define the acceleration curve. Objective function includes dynamic performances as well as kinematic properties of a valve train. Similar optimization procedure was also performed using Polydyne cam profile synthesis method. Optimized profiles using the Hermite curve are proved to be superior to those using the Polydyne method.

  • PDF

엔진 캠/태핏 시스템의 작동토크 측정과 마찰특성 (Torque Characteristics of Cam/Tappet System)

  • 여창동;김대은;윤정의
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.66-74
    • /
    • 1998
  • The operating torque and tribological characteristics of a cam/tappet system of an I.C. engine have an important effect on the engine efficiency. More power is lost for higher operation torque which is affected by the friction of a cam/tappet system. In this work experimental investigation of the torque behavior of a cam/tappet system was conducted to get tribological characteristics. Specifically, the torque was measured with respect to oil temperature and camshaft speed. The torque decreased with increasing camshaft speed because of decreasing friction coefficient but was hardly affected by the oil temperature. Also, the torque was the largest near the cam nose region.

  • PDF

대형 디젤 엔진의 연비 향상을 위한 Miller Cam 평가 (Evaluation on a Miller Cam for Improving the Fuel Consumption of a Large Diesel Engine)

  • 송창훈;왕태중;임희준
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.47-52
    • /
    • 2016
  • Miller timing is one of the promising ways which can improve the fuel consumption of internal combustion engines. Indeed, Miller timing employing an early intake valve close is widely applied to large diesel and gas engines to enhance performance and reduce NOx emissions. In this study, performance evaluation is carried out by 1-D cycle simulation in order to estimate the effect of Miller CAM timing before BDC for a 32 L turbocharged diesel engine. To optimize Miller CAM timing, a single stage turbocharger is matched with an early intake valve close since boost pressure is a significant parameter that can control compression work in a turbocharged engine. The engine simulation result shows that there is enough potential to improve fuel consumption rate and also reduce NOx emissions at the same time.Abstract here.

자동차 엔진 밸브트레인의 타음감소를 위한 캠 형상 설계 (Cam Profile Design for Impulsive Noise Reduction of Automotive Engine Valve Train)

  • 안기용;김도중
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.139-148
    • /
    • 2006
  • Valve train is one of the important noise sources in idling engines. Valve train noise comes mostly from two different impacts. One is the impact between cam and tappet at the beginning of the valve open period, which is an important source of impulsive noise of valve trains. The other is the impact between valve and valve seat at the closing of the valve open period. In case of mechanical lash adjusters, it is very difficult to control the initial impact. In this paper, we designed various types of cam profiles, especially in the opening ramp design, and investigated the effect of cam profiles on the magnitude of the initial impact. The effects that some cam design parameters have on the impulsive noise are also observed.

직접분사식 디젤기관 배기배출물 저감을 위한 연소인자의 최적화 (An Optimization of the Combustion Parameters for Reducing Exhaust Emissions in a Direct Injection Diesel Engine)

  • 주봉철;노병준;김규철;이삼구
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.78-85
    • /
    • 2000
  • This study is to develop the diesel engine which has 6 cylinder natural aspiration direct injection type of 7.4$\ell$ with high performance, low emissions and low fuel consumption Finally the developed engine meets Korean `98 exhaust emission regulation for the city bus of heavy duty diesel engine by optimizing the various combustion parameters affecting performance and exhaust emissions. Combustion parameters are the swirl ratio of intake ports, the profile of injection pump`s cam affecting injection pressure, the design features of piston bowl of injection pump`s cam affecting injection pressure, the design features of piston bowl of combustion chamber and injector`s hole size. Through experimental analysis, various combustion parameters are optimized and the results are as follows; the swirl ratio is 2.20, the profile of injection pump`s cam is concave and re-entrant ratio, inner diameter of piston bowl and hole diameter of injector is 0.88,$\psi$64.0mm and $\psi$0.25mm respectively.

  • PDF

부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석 (Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components)

  • 황원걸;성원석;안기원
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.

OHV형 밸브트레인의 동특성 해석 및 최적 캠 형상설계에 관한 연구 (A Study on Dynamic Simulation and Cam Profile Optimization for OHV Type Valve Trains)

  • 김도중;윤수환;박병구;신범식
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.110-122
    • /
    • 1996
  • The objective of this study is to understand the dynamic characterictics of OHV type valve trains and to design and optimal cam profile which will improve engine performance. A numerical model for valve train dynamics is presented, which aims at both accuracy and computational efficiency. The lumped mass model and distributed parameter model were used to describe the valve train dynamics. Nonlinear characterictics in the valve spring behavior were included in the model. Comprehensive experiments were carried out concerning the valve train dynamics, and the model was tuned based on the test results. The dynamic model was used in designing an optimal cam profile. Because the objective function has many local minima, a conventional local optimizer cannot be used to find an optimal solution. A modified adaptive random search method is successfully employed to solve the problem. Cam lobe area could be increased up to 7.3% without any penalties in kinematic and dynamic behaviors of the valve train.

  • PDF

끝단 지지 로커암형 오버 헤드 밸브트레인의 캠/종동자 마모 특성에 미치는 밸브트레인 레이아웃의 영향 (Effect of Valve Train Layout on Cam/Tappet Wear Characteristics of End Pivot Rocker Arm Type OHC Valve Train)

  • 이종원;장재영;김도중
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.184-192
    • /
    • 2001
  • Cam/tappet wear is one of the critical concerns in valve train deign. Maximum contact stress and minimum oil film thickness between the cam and tappet are usually checked for the estimation of wear characteristics. If the two extreme cases arise simultaneously, there is a strong possibility of cam/tappet wear. In this paper, effects of valve train layout on the wear characteristics were studied. Especially for swinging arm type valve trains, initial geometric layout must be very carefully defined to avoid wear problems. The study was performed fur an end pivot type OHC valve train, which had severe wear problems. Analysis results show that some geometric parameter affect very sensitively on the wear characteristics. Experiments were also performed for the original and modified valve trains, which strongly support the analysis results.

  • PDF