• Title/Summary/Keyword: Automotive cylinder head

Search Result 88, Processing Time 0.026 seconds

Numerical Analysis of Flow Characteristics of the Filter for Separating Oil Mist from Blow-by Gas (블로바이 가스 내 오일입자들을 제거하기 위한 필터의 유동특성 수치해석)

  • Yun, Jeong-Eui;Chae, Kangseog;Kang, Hyukjin;Chung, Doyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.549-555
    • /
    • 2016
  • This research was performed to determine the oil separation characteristics of the specially designed oil filter installed in a PCV cylinder head passage. The oil filter was specially designed with fleece for separating oil mist from blow-by gas. The fleece, made of fiber fabric material, is placed in the oil filter case to absorb oil mist with a small pressure drop during blow-by gas through the filter. To do this, 3-D CFD analysis was simulated for the simplified PCV system with the oil filter using the commercial code, Ansys CFX. Results showed that the oil filter's efficiency with fleece sharply increased as oil droplet size increased.

A Study for Failure Examples Including with Engine Oil Leakage, Poor Contact by Fin Damage and Vaporizer Inferiority on LPG Automotive (LPG 자동차의 엔진오일누설, 핀 손상에 의한 접촉불량, 베이퍼라이저 내부불량으로 인한 고장사례연구)

  • IL Kwon, Lee;Chang Ho, Kook;Sung Hoon, Ham;Seung Yong, Lee;Jae Gang, Lee;Seung Min, Han; Woo Chan, Hwang;Dae Cheon, Jang;Chang Bae, You;Jeong Ho, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.24-29
    • /
    • 2022
  • This paper is a purpose to Analyze and study the failure examples for a engine oil leakage of camshaft bearing seal, poor contact by computer connector fin damage and vaporizer inferiority on LPG automotive. The first example, when the researcher disassembled the cylinder head of engine to establish the cause for oil leakage, he confirmed the engine oil leakage by damaged between the engine intake camshaft bearing and seal part. The second example, the connector fin of power source line that control the starting of a car supplied with engine computer. As a result, it found the fact that the engine operation stopped because of cutting of the power source by connector fin damage. The third example, it verified the engine incongruity phe cutting of the power source by connector fin damage. The third example, it verified the engine incongruity phenomenon as thd gas didn't flow the vaporizer by foreign substance deposit. Finally, it supplied a small quantity gas from vaporizer to mix. As the computer controlling mix opening condition supplied a air as opening signal, the air and fuel became rarefied state. it knew that the engine didn't produce prpper power. Therefore, a car have to throughtly inspect not in order to arise the failure symptoms.

A Study for Failure Examples Including with Timing Belt, Camshaft Position Sensor and Ignition Coil Damage of LPG Vehicle Engine (액화석유가스 자동차 엔진의 타이밍벨트, 캠샤프트포지션센서, 점화코일 손상과 관련된 고장사례에 대한 연구)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Kim, Jee Hyun;Lee, Jae Gang;Han, Seung Min;Hwang, Woo Chan;Hwang, Han Sub;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.54-59
    • /
    • 2022
  • This paper is a purpose to study and analyze the failure examples for timing belt, camshaft position sensor and ignition coil of LPG automotive engine. The first example, whe the service man install the front case bracket of engine, he excessively tightened up a 12mm bolt for being fixed of brackct. As a results, the bolt was separated from joint part so that it was put in between the crankshaft sprocket. Therefore the belt was broken off because of interference between timing belt and sprocket tooth. The second example, it verified the disharmony phenenomen of engine that the gap of the camshaft position sensor and camshaft senseing point assembled on cylinder head part was small more than iregular value so that the it was generated senseing damage phenomenon by pulse signal misconduct. The third example, it was found the engine disharmony phenomenon that the fire in the ignition coil was leaked by inner damage of Number 2 ignition coil.Therefore, the the manager of a car throughtly have to inspect not in order to arise the failure symptoms.

Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(5)-Effect of Evaluation Position (정상유동 장치에서 유동 특성 평가 방법에 대한 연구(5) - 평가위치의 영향)

  • Cho, Siehyung;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.179-189
    • /
    • 2017
  • This paper is the fifth investigation on the methods of evaluating flow characteristics in a steady flow bench. In previous studies, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation may lead to serious problems. In addition, though the velocity profiles were improved as the measuring position went downstream, the distributions were far from ideal regardless of the valve angle and evaluation position. The eccentricities were also not sufficiently small to disregard the effect on impulse swirl meter (ISM) measurement. Therefore, the effect of these distribution and eccentricity changes according to the positions needs to be analyzed to discuss the method of flow characteristics estimation. In this context, the effects of evaluation position on the steady flow characteristics were studied. For this purpose, the swirl coefficient and swirl ratio were assessed and compared via measurement of the conventional ISM and calculation based on the velocity by particle image velocimetry(PIV) from 1.75B, 1.75 times bore position apart from the cylinder head, to the 6.00B position. The results show that the swirl coefficients by ISM strictly decrease and the curves as a function of the valve lift become smooth and linear as the measuring position goes downstream. However, the values through the calculation based on the PIV are higher at the farther position due to the approach of the tangential velocity profile to ideal. In addition, there exists an offset effect between the velocity distribution and eccentricity in the low valve lift range when the coefficients are estimated based on the swirl center. Finally, the curve of the swirl ratio by ISM and by PIV evaluation as a function the measuring position intersect around 5.00B plane except at $26^{\circ}$ valve angle.

STUDY ON COMBUSTION CHARACTERISTICS AND APPLICATION OF RADIAL INDUCED IGNITION METHOD IN AN ACTUAL ENGINE

  • PARK J. S.;KANG B. M.;KIM K. J.;LEE T. W.;YEOM J. K.;CHUNG S. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.555-561
    • /
    • 2005
  • This experimental study was executed to obtain basic data for actual engine operation using radical induced ignition method (RI) which can achieve emission reduction and high efficiency due to the rapid bulk combustion. In this study, a direct injection diesel engine was converted into SI type engine with a sparkplug. The modified SI type engine can be divided into two classes. One is the SI engine with a sparkplug only at the cylinder head, and the other is the SI engine with the sparkplug which is enveloped in a sub-chamber. Also, a basic experimental was conducted in order to investigate combustion mechanism of radical induced injection before the experiment execution for actual engine using the modified SI engine. The bulk combustion phenomenon of radical induced ignition method was analyzed from the basic experiment by using a constant volume chamber. Volume value of sub-chamber used in this experiment is approximately $0.2\%$ of one of the main combustion chamber. In this paper, combustion characteristics using radical induced injection method was compared with that of using spark ignition method according to change in the engine speed and equivalence ratio. As a result, in the case of the radical induced injection engine, the combustion duration and cycle variation were respectively reduced ranged from $\Phi$(equivalence ratio)=0.8 (lean mixture ratio) to $\Phi$=1.0 (stoichiometric ratio).

Application of CFD-FEM Coupling Methodology to Thermal Analysis on the Large-size Marine Diesel Engine (선박용 대형 디젤 엔진 열 해석을 위한 CFD-FEM 연계 방법의 적용)

  • Kim, Han-Sang;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2008
  • Temperatures of engine head and liner depend on many factors such as spray and combustion process, coolant passage flow and engine related structures. To estimate the temperature distribution of engine structure, multi-dimensional computational fluid dynamics (CFD) codes have been mainly adopted. In this case, it is of great importance to obtain the realistic wall temperature distribution of entire engine structure. In the present work, a CFD-FEM coupling methodology was presented to address this demand. This approach was applied to a real large-size marine diesel engine. CFD combustion and coolant flow simulations were coupled to FEM temperature analysis. Wall heat flux and wall temperature data were interfaced between combustion simulation and solid component temperature analysis via translator by a commercial CFD package named FIRE by AVL. Heat transfer coefficient and surface temperature data were exchanged and mapped between coolant flow simulation and FEM temperature analysis. Results indicate that there exists the optimum cell thickness near combustion chamber wall to reasonably predict the wall heat flux during combustion period. The present study also shows that the effect of cell refining on predicting in-cylinder pressure during combustion is negligible. Hence, the basic guidance on obtaining the wall heat flux needed for the reasonable CFD-FEM coupling analysis has been established. It is expected that this coupling methodology is a robust tool for practical engine design and can be applied to further assessment of the temperature distribution of other engine components.

Study of Combustion Characteristics with Variations of Combustion Parameter in Ultra-Lean LPG Direct Injection Engine (연소제어인자의 변화에 따른 직접분사식 초희박 LPG엔진의 연소특성 연구)

  • Park, Yun Seo;Park, Cheol Woong;Oh, Seung Mook;Kim, Tae Young;Choi, Young;Lee, Yong Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.607-614
    • /
    • 2013
  • Nowadays, automotive manufacturers have developed various technologies to improve fuel economy and reduce harmful emissions. The ultra-lean direct injection engine is a promising technology because it has the advantage of improving thermal efficiency through the deliberate control of fuel and ignition. This study aims to investigate the development of a spray-guided-type lean-burn LPG direct injection engine through the redesign of the combustion system. This engine uses a central-injection-type cylinder head in which the injector is installed adjacent to the spark plug. Fuel consumption and combustion stability were estimated depending on the ignition timing and injection timing at various air-fuel ratios. The optimal injection timing and ignition timing were based on the best fuel consumption and combustion stability.

Effects of Port Shape on Steady Flow Characteristics in an SI Engine with Semi-Wedge Combustion Chamber (2) - Velocity Distribution (2) (반 쐐기형 연소실을 채택한 SI 기관에서 포트형상이 정상유동 특성에 미치는 영향 (2) - 유속분포 (2))

  • Yoon, Inkyoung;Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2017
  • This study is the second investigation on the steady flow characteristics of an SI engine with a semi-edge combustion chamber as a function of the port shape with varying evaluation positions. For this purpose, the planar velocity profiles were measured from 1.75B, 1.75 times of bore position apart from the bottom of head, to 6.00B positions using particle - image velocimetry. The flow patterns were examined with both a straight and a helical port. The velocity profiles, streamlines, and centers of swirl were almost the same at the same valve lift regardless of the measuring position, which is quite different from the case of the pent-roof combustion chamber. All the eccentricity values of the straight port were out of distortion criterion 0.15 through the lifts and the position. However, the values of the helical port exceeded the distortion criterion by up to 4 mm lift, but decreased rapidly above the 3.00B position and the 5 mm lift. There always existed a relative offset effect in the evaluation of the swirl coefficient using the PIV method due to the difference of the ideal impulse swirl meter velocity profile assumption, except for the cylinder-center-base estimation that was below 4 mm of the straight port. Finally, it was concluded that taking the center as an evaluation basis and the assumption about the axial velocity profile did not have any qualitative effect on swirl evaluation, but affected the value owing to the detailed profile.