• Title/Summary/Keyword: Automotive chip

Search Result 59, Processing Time 0.029 seconds

Supply Chain Ecosystem of Automotive Chip (차량용 반도체 공급망 생태계)

  • Chun, H.S.;Kim, H.T.;Roh, T.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.1-11
    • /
    • 2021
  • In this study, we analyze the automotive chip ecosystem that recently caused the global supply shortage, and attempt to derive policy implications for us from the conclusion. Automotive chips are critical parts that control various systems so that a vehicle can drive itself or operate with electricity. The current shortage in supply and demand for automotive chips is due to the inconsistency between supply and demand between automotive chip companies and car manufacturers. To promote the automotive chip industry, new investment incentives, tax cuts, and human resource training are needed.

A 77 GHz mHEMT MMIC Chip Set for Automotive Radar Systems

  • Kang, Dong-Min;Hong, Ju-Yeon;Shim, Jae-Yeob;Lee, Jin-Hee;Yoon, Hyung-Sup;Lee, Kyung-Ho
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.133-139
    • /
    • 2005
  • A monolithic microwave integrated circuit (MMIC) chip set consisting of a power amplifier, a driver amplifier, and a frequency doubler has been developed for automotive radar systems at 77 GHz. The chip set was fabricated using a 0.15 ${\mu}$ gate-length InGaAs/InAlAs/GaAs metamorphic high electron mobility transistor (mHEMT) process based on a 4-inch substrate. The power amplifier demonstrated a measured small signal gain of over 20 dB from 76 to 77 GHz with 15.5 dBm output power. The chip size is 2mm${\times}$ 2mm. The driver amplifier exhibited a gain of 23 dB over a 76 to 77 GHz band with an output power of 13 dBm. The chip size is 2.1mm${\times}$ 2mm. The frequency doubler achieved an output power of -6 dBm at 76.5 GHz with a conversion gain of -16 dB for an input power of 10 dBm and a 38.25 GHz input frequency. The chip size is 1.2mm ${\times}$ 1.2mm. This MMIC chip set is suitable for the 77 GHz automotive radar systems and related applications in a W-band.

  • PDF

A Study on Simulation of Chip Recycling System for the Management of Cutting Chip in 5-Axis FMS Line (5축 FMS라인의 절삭 칩 처리를 위한 칩 회수처리장치 시뮬레이션에 관한 연구)

  • Lee, In-Su;Kim, Hae-Ji;Kim, Deok-Hyun;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.175-181
    • /
    • 2013
  • The primary element of machining automation is to maximize the utilization of machine tools, which determines the output and lead-time. In particular, 95% of raw materials for wing ribs are cut into chips and 0.6 ton of chips are generated every hour from each machine tool. In order to verify the chip recycling system that controls the chips from the machines in five-axis FMS line, a simulation of the virtual model is constructed using the QUEST simulation program. The optimum speed of the chip conveyor and its operating conditions that directly affect the efficiency of the FMS line are presented including the chip conveyor speed, the maximum capacity of the hopper, and the number of chip compressors.

A 77GHz MMIC Transceiver Module for Automotive Forward-Looking Radar Sensor

  • Kang, Dong-Min;Hong, Ju-Yeon;Shim, Jae-Yeob;Yoon, Hyung-Sup;Lee, Kyung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.609-610
    • /
    • 2006
  • A 77GHz MMIC transceiver module consisting of a power amplifier, a low noise amplifier, a drive amplifier, a frequency doubler and a down-mixer has been developed for automotive forward-looking radar sensor. The MMIC chip set was fabricated using $0.15{\mu}m$ gate-length InGaAs/InAlAs/GaAs mHEMT process based on 4-inch substrate. The power amplifier demonstrated a measured small signal gain of over 20dB from $76{\sim}77GHz$ with 15.5dBm output power. The chip size is $2mm{\times}2mm$. The low noise amplifier achieved a gain of 20dB in a band between $76{\sim}77\;GHz$ with an output power of 10dBm. The chip size is $2.2mm{\times}2mm$. The driver amplifier exhibited a gain of 23dB over a $76{\sim}77\;GHz$ band with an output power of 13dBm. The chip size is $2.1mm{\times}2mm$. The frequency doubler achieved an output power of -16dBm at 76.5GHz with a conversion gain of -16dB for an input power of 10dBm and a 38.25GHz input frequency. The chip size is $1.2mm{\times}1.2mm$. The down-mixer demonstrated a measured conversion gain of over -9dB. The chip size is $1.3mm{\times}1.9mm$. The transceiver module achieved an output power of 10dBm in a band between $76{\sim}77GHz$ with a receiver P1dB of -28dBm. The module size is $8{\times}9.5{\times}2.4mm^3$. This MMIC transceiver module is suitable for the 77GHz automotive radar systems and related applications in W-band.

  • PDF

Development of a High speed Actuator for electric performance testing System of ceramic chips (세라믹칩 전기적 성능검사 시스템을 위한 고속구동 액튜에이터 개발)

  • Bae, Jin-Ho;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1509-1514
    • /
    • 2011
  • The core of IT products, electronic components, especially the MLCC, chip inductors, chip Varistors and so on. In order to test the electrical characteristics of the chip using the Reno-pin contact test method has been used. In current chips, mass production of semiconductor manufacturing processes, high-speed production test for the chip speed up, precision is required. But Vibration displacement is a very short, so in order to overcome these shortcomings, the displacement amplification to design the structure has been actively studied. In this paper, a building structure with a flexible hinge was designed amplification instrument, semiconductor chip industry in the performance test and inspection equipment to measure the electrical characteristics of high speed linear actuators Reno-Pin using system was developed.

Collaborative Streamlined On-Chip Software Architecture on Heterogenous Multi-Cores for Low-Power Reactive Control in Automotive Embedded Processors (차량용 임베디드 프로세서에서 저전력 반응적 제어를 위한 이기종 멀티코어 협력적 스트리밍 온-칩 소프트웨어 구조)

  • Jisu, Kwon;Daejin, Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.375-382
    • /
    • 2022
  • This paper proposes a multi-core cooperative computing structure considering the heterogeneous features of automotive embedded on-chip software. The automotive embedded software has the heterogeneous execution flow properties for various hardware drives. Software developed with a homogeneous execution flow without considering these properties will incur inefficient overhead due to core latency and load. The proposed method was evaluated on an target board on which a automotive MCU (micro-controller unit) with built-in multi-cores was mounted. We demonstrate an overhead reduction when software including common embedded system tasks, such as ADC sampling, DSP operations, and communication interfaces, are implemented in a heterogeneous execution flow. When we used the proposed method, embedded software was able to take advantage of idle states that occur between heterogeneous tasks to make efficient use of the resources on the board. As a result of the experiments, the power consumption of the board decreased by 42.11% compared to the baseline. Furthermore, the time required to process the same amount of sampling data was reduced by 27.09%. Experimental results validate the efficiency of the proposed multi-core cooperative heterogeneous embedded software execution technique.

Development of Atmospheric Pressure Plasma Equipment and It's Application to Flip Chip BGA Manufacturing Process (대기압 플라즈마 설비 개발 및 Flip Chip BGA 제조공정 적용)

  • Lee, Ki-Seok;Ryu, Sun-Joong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.15-21
    • /
    • 2009
  • Atmospheric pressure plasma equipment was successfully applied to the flip chip BGA manufacturing process to improve the uniformity of flux printing process. The problem was characterized as shrinkage of the printed flux layer due to insufficient surface energy of the flip chip BGA substrate. To improve the hydrophilic characteristics of the flip chip BGA substrate, remote DBD type atmospheric pressure plasma equipment was developed and adapted to the flux print process. The equipment enhanced the surface energy of the substrate to reasonable level and made the flux be distributed over the entire flip chip BGA substrate uniformly. This research was the first adaptation of the atmospheric pressure plasma equipment to the flip chip BGA manufacturing process and a lot of possible applications are supposed to be extended to other PCB manufacturing processes such as organic cleaning, etc.

  • PDF

A Study on Automotive LED Business Strategy Based on IP-R&D : Focused on Flip-Chip CSP (Chip-Scale Packaging) (IP-R&D를 통한 자동차분야 LED사업전략에 관한 연구 : Flip-Chip을 채용한 CSP (Chip-Scale Packaging) 기술을 중심으로)

  • Ryu, Chang Han;Choi, Yong Kyu;Suh, Min Suk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.13-22
    • /
    • 2015
  • LED (Light Emitting Diode) lighting is gaining more and more market penetration as one of the global warming countermeasures. LED is the next generation of fusion source composed of epi/chip/packaging of semiconductor process technology and optical/information/communication technology. LED has been applied to the existing industry areas, for example, automobiles, TVs, smartphones, laptops, refrigerators and street lamps. Therefore, LED makers have been striving to achieve the leading position in the global competition through development of core source technologies even before the promotion and adoption of LED technology as the next generation growth engine with eco-friendly characteristics. However, there has been a point of view on the cost compared to conventional lighting as a large obstacle to market penetration of LED. Therefore, companies are developing a Chip-Scale Packaging (CSP) LED technology to improve performance and reduce manufacturing costs. In this study, we perform patent analysis associated with Flip-Chip CSP LED and flow chart for promising technology forecasting. Based on our analysis, we select key patents and key patent players to derive the business strategy for the business success of Flip-Chip CSP PKG LED products.

Electric and Electronic Systems for the 21st Century Automobile (21세기 자동차를 위한 전기.전자 시스템)

  • SunWoo, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.451-453
    • /
    • 1998
  • Global competition of automotive market, affordable prices of electronic components, and tougher regulations on emission, fuel economy, and safety become the major reason that automotive industries rapidly employ a large number of electric and electronic systems. Considering that the application of electronic technologies for automobile is increasing at a rapid rate, it would be worthwhile to evaluate the trend of the uses of major electric and electronic systems for the 21st century vehicle. The major technology will be leaded by 32/64-bit microcontroller, on-chip flash memory, hybrid ASICs, IGBT, and smart sensors.

  • PDF