• Title/Summary/Keyword: Automotive bumper

Search Result 88, Processing Time 0.023 seconds

A Study of Strength Property and Durability on Automotive Front Bumper Guard by Configuration (형상 별 자동차 프런트 범퍼 가드에 대한 강도 특성 및 내구성 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.28-33
    • /
    • 2018
  • The automotive front bumper guard is the most important part of the vehicle for protecting the life of driver when a traffic accident happens. In order to ensure safe driving, this part must possess sufficient strength and durability. This study was carried out with structural and fatigue analyses by designing front bumper guard models. After the lowest value for maximum total deformation and equivalent stress was found through structural analysis and the highest value for fatigue life was found for all three models, it was shown that the type C front bumper guard model was the most suitable for application to a real car. The strength property and durability of the optimum design were determined through this study's results.

Optimization of Bumper Beam Section of Crashworthiness (충돌성능을 고려한 승용차 범퍼빔 단면의 최적화)

  • Kang, S.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.276-284
    • /
    • 1998
  • Optimum design of bumper beam is investigated using nonlinear CAE structural analysis techniques.In order to minimize its weight, while enhancing structural performances, bumper beam structural analyses were carried out to produce optimum section. Model is composed of bumper beam and stay. First, considering FMVSS safety standard, static strength and energy absorbing capability were estimated for several competitive bumpers through pendulum static analysis, and most promising section was chosen. Next, to ensure dynamic crashworthinesss performance for center pole impact was evaluated for the bumper beam with chosen section through pendulum static analysis, referring to DHS bumper dynamic impact standard. Finally, 2.5 mph bumper beam was designed and its structural performance was estimated. Through this investigation, an optimized bumper beam section with less weight of 20% while maintaining almost equal carshworthiness, compared with a conventional bumper beam section which proved its impact crashworthiness by experiments, was developed.

  • PDF

Impact Simulation of Automotive GMT Bumper (자동차용 유리섬유강화 매트 수지(GMT) 범퍼의 충돌성능 평가 수치모사)

  • 백승훈;문종근;정우식;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.137-140
    • /
    • 2003
  • Impact of Automotive GMT(Glassfiber reinforced Mat Thermoplastic) Bumper for '5Mhp Barrier Test'was simulated using ls-dyna. The FE model consists of foam which is energy absorber, bumper beam and stay etc. Bumper intrusion and deflection was compared with the experimental results. Effects of uncertainty of material property and deviation of impact velocity were considered and results were compared with those of base design. Effects of number of integration points through th thickness was also investigated.

  • PDF

The optimization of front bumper beam using Hot stamping Technology (핫스템핑 공법을 이용한 Front Bumper Beam 최적화)

  • Kim, D.H.;Kim, K.S.;Na, S.J.;Um, I.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.241-244
    • /
    • 2008
  • Automotive companies have conducted a study for light weigh body and crash safety. But It is difficult to adapt a mass production because of formability with high strength steel in the conventional stamping process. Recently, Automotive maker in the Europe, USA, Japan has applied a hot stamping with boron steel in the body structure. Hot stamping technology spread fast in various body parts of automobile. Bumper beam has been applied in the foreign automotive company so much nowadays. In this study, We will optimize crash performance of bumper beam using hot stamping through comparison with conventional bumper beam.

  • PDF

A Study on the Damageability and Repairability of the Car Bumper Systems with Gas Tube (정면 오프셋 충돌시 가스튜브를 이용한 차량용 범퍼의 손상성, 수리성에 대한 연구)

  • 조휘창;박인송
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.134-139
    • /
    • 2003
  • The car crash accidents in low speed occurs most frequently. Damage on a conventional bumper after the car accident causes the bumper to get fixed most of time. This study shows how a gas tube bumper reduces a damageability and increase repairability after the car accidents. The 15 km/h 40% offset front and rear crash test recommended by RCAR (Research council for automobile repairs) standard was performed and evaluated damages on the gas tube bumper by the pendulum impact tester. In this study, the gas tube bumper reduces damageability and increases repairability after car crash accidents. In addition, car frame design to apply the gas tube bumper may consider to be changed.

Low Speed Crash Behaviour of Aluminium Bumper System W.R.T. Design Variables (설계변수에 따른 알루미늄 범퍼 시스템의 저속 충돌해석)

  • Kim, Dae Young;Han, Bo Seok;Hong, Min Sun;Kim, Dong Ok;Cheon, Seong Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • In the present study, the low speed (4 km/h) crash behaviour of an aluminium bumper system was characterised by FE analyses based on the FMVSS 581, which regulates automotive bumpers. Two types of cross-sectional designs, i.e., Model 1, which contains a single rib and Model 2, double ribs, have been considered along with Al7021, 6082 and 6060 for the aluminium bumper back beam. Variations in thickness starting from 2 to 4 mm of the bumper system cross-section in the FE model was implemented in order to investigate the thickness effect on the bumper's crash behaviour.. Three kinds of design variables, namely, number of ribs, material and thickness, are considered. The FE analysis results are summarised with the maximum load and the Specific Energy Absorption (SEA) since they are the key factors in determining the crashworthiness of automotive structures. The results may also be able to indicate how to achieve lightweight structure of the automotive bumper system either directly or indirectly.

Light-weight Design and Simulation of Automotive Rear Bumper Impact Beam Using Boron Steels (보론강을 이용한 리어 범퍼 임팩트빔의 경량 설계 및 해석)

  • Kim, Kee-Joo;Han, Chang-Pyung;Lim, Jong-Han;Lee, Young-Suk;Won, Si-Tae;Lee, Jae-Woong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.98-102
    • /
    • 2012
  • Increasing the fuel economy has been an inevitable issue for the development of new cars, and one of the important measures to improve the fuel economy is to decrease the vehicle weight. In order to obtain this goal, the researches about lighter, stronger and the well impact absorbing bumper impact beam have been studied without sacrificing bumper safety. In this study, the overall weight reduction possibility of rear bumper impact beam could be examined based on the variation of frontal, offset and corner impact crash capability by substituting a ultra high strength steel material (boron steel ) having tensile strength of 1.5 GPa grade instead of conventional steels. In addition, the section variations (open section, closed section, open section with 5 stays) of the bumper impact beam structure were examined carefully. It could be reached that this analysis could be well established and be contributed for design guide and the optimum design conditions of the automotive rear bumper impact beam development.

A Durability Investigation on Automotive Front Bumper Guard (자동차의 프런트 범퍼 가드에 관한 내구성 연구)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.1-7
    • /
    • 2020
  • In this study, three models on the installation of automotive additional front bumper guard were designed and the structural analysis was carried out. The additional front bumper models B and C appears to be safer on stability instead of the basic front bumper model A. Model A with a simple structure is shown to have the safe region overall except in the area where the load is applied directly. Models B and C are shown to have the shortest lives at the regions where the bumpers are connected with each other. By comparing with the least fatigue lives at models A, B and C, Model B has the longest life with the best durability.

A Study on the Production of the Back Beam for a Automotive Bumper by Roll Forming Process (롤 성형 공정에 의한 자동차용 범퍼빔 제조에 관한 연구)

  • 정동원;이문용;김광희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.163-170
    • /
    • 2003
  • The back beam for a automotive bumper was roll formed to improve performance, reduce weight and save cost. For the back beams produced by conventional stamping and roll forming, the crashworthiness analyses were carried out by numerical simulation and real impact test. The characteristic properties and applicability of the roll formed back beam are discussed from the results of the analyses.

A Study on the Hydroforming Technology of an Automotive Bumper Rail (자동차용 범퍼레일의 하이드로포밍 기술 연구)

  • 손성만;이문용;이상용
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.561-566
    • /
    • 2000
  • Recently, the hydroforming technology has been recognized as a general technique in manufacturing industry, especially in automotive industry. Hydroforming is applied to increase strength, and to decrease weight, cost and parts. Hydroforming is based on the inflation of, for Instance, a tube, coupled with axial or radial compression and by subsequent expansion and sizing against the die wall. Expansion, axial feeding, calibration are important parameters in this process. In this paper, the effects of various parameters such as internal pressure, axial feeding and friction on hydroforming of automotive bumper rail have been considered.

  • PDF