• Title/Summary/Keyword: Automotive air conditioning system

Search Result 226, Processing Time 0.025 seconds

A Design of the Block Type Expansion Valve in Automotive Air Conditioning System using HFC-134a (신냉매용 자동차 공조 시스템에서 블록식 팽창밸브의 설계)

  • Kim, K.H.;Park, S.H.;Kang, W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.196-203
    • /
    • 2003
  • This study was performed to design the optimal block type expansion valve through analyzing the characteristics of the block type expansion valve in automotive air conditioning system using HFC-134a. Because an alternative refrigerant (HFC-l34a) is being used instead of CFC-12 for automotive air conditioning system, newly designed air conditioning components are necessary due to changes in characteristics. The performance tests were accomplished through the test bench, that is manufactured based on the study. And then it was carried out to measure the variation of temperature and pressure at each part of the air conditioning system according to the compressor speed.

Transient Simulation of an Automotive Air-Conditioning System (자동차 에어컨 비정상과정 시뮬레이션)

  • 오상한;원성필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1089-1096
    • /
    • 2001
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as the key design variable. Therefore, understanding of the overall transient characteristics of the system is essential to the preliminary design as well as steady-state characteristics. The objective of this study is to develop a computer simulation model and estimate theoretical1y the transient performance of an automotive air-conditioning system. To accomplish this, a mathematical modelling of each component, such as compressor, condenser, expansion valve, and evaporator, is presented first of all. For a detailed calculation, condenser and evaporator are divided into many subsections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in an attempt to simplify the ana1ysis, but the quasi-static ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. The developed simulation model is validated with a comparison to laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed fairly well wish those of test data in this case.

  • PDF

A Study on the Performance Analysis of Automotive Air Conditioning System (자동차용 에어컨 시스템의 성능해석에 관한 연구)

  • 이대웅;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.304-314
    • /
    • 2002
  • Performance analysis of the automotive air-conditioning system is conducted by using computer simulation, and performance tests are carried out by using the climate wind tunnel in order to verify simulation. Evaporator and condenser were modeled by using empirical correlation which was obtained from calorimeter data, and compressor was modeled by using map based method. The steady state thermodynamic conditions of refrigerant satisfying mass and energy balance were assumed in the simulation program for automotive airconditioning system. The system performance was analyzed by finite difference method until differential air enthalpy between evaporator inlet and outlet becomes converged. Simulation results are in good agreement with experimental results at most operating conditions. Variation of discharge temperature and pressure of compressor, outlet temperature of evaporator, cooling capacity, and COP were investigated in term of air volume flow rate for evaporator, compressor capacity, compressor speed, superheat of thermostatic expansion valve, and diameter of suction line.

Computer Simulation of an Automotive Air-Conditioning in a Transient Mode

  • Oh, Sang-Han;Won, Sung-Pil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.220-228
    • /
    • 2002
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as a key design variable. Therefore, transient characteristics of each system component are essential to the preliminary design as well as steady-state performance. The objective of this study is to develop a computer simulation model and ostinato theoretically the transient performance of an automotive air-conditioning system. To do that, the mathematical modelling of each component, such as compressor, condenser, receiver/drier, expansion valve, and evaporator, is presented first of all. The basic balance equations about mass and energy are used in modelling. For detailed calculation, condenser and evaporator are divided into many sub-sections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in this analysis, but the quasisteady state ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. Also it is assumed that there are no heat loss and no pressure drop in discharge, liquid, and suction lines. The developed simulation model is validated by comparing with the laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed well with those of test data in this case.

Development of program for the automotive air conditioning system analysis (자동차 에어컨 시스템 해석 프로그램의 개발)

  • 홍진원;최영기;이정희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.227-237
    • /
    • 1998
  • A numerical simulation has been carried out for the automotive air conditioning system. The purpose of this simulation is to present the methods for simulating car air conditioning components, systems and cool-down performance by computerized mathematical model and to analyze the performance of A/C system. In analyzing the heat exchanger(evaporator and condenser), the finite volume model which has a merit in predicting the temperature field in detail because it can consider partial variation of thermal property and heat transfer coefficient is used. In analyzing the compressor, the polytropic approach which regards the actual compression process as a reversible polytropic process is employed. In analyzing vehicle passenger compartment, the thermal network is employed to simulate the car cool down process. This A/C system program can be used for analyzing a component performance when a component is alternated or designed and for analyzing the engine cooling system when A/C system is operated.

  • PDF

An Experimental Study on Performance of Automotive Air conditioning System by using R-134a and R-152a (R-134a와 R-152a 냉매를 이용한 자동차용 에어컨 시스템의 성능에 관한 실험적 연구)

  • Kim, Jeong-Su;Lee, Dae-Woong;Yoo, Seong-Yeon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1225-1231
    • /
    • 2006
  • Recently, as the climate of temperature change has happened worldwide, To solve this problem, Kyoto protocol was taken to regulate global warming on Feb. 2005 and each country is making efforts to prevent global warming. In the automotive industry, R-134a refrigerant is widely used most these days because it has zero ODP(Ozone Depletion Potential). But R-134a GWP(Global Warming Potential) is so high. Therefore, replacement refrigerant desperately is needed as a alternative refrigerant. So, R-l52a is considered as one of the alternative refrigerants due to zero ODP and lower GWP against as required on Europe Committee. In this paper, performance of the air conditioning system between R-134a and R-152a is investigated experimentally. In the bench level, cooling capacity, condensing capacity, COP of automotive air conditioning system are ovaluated by means of air velocity entering the condenser and compressor revolution speed with optimized charge refrigerant quantity. Result of this study, R-152a refrigerant shows the possibility as alternative refrigerant of current R-134a in automotive air conditioning system.

  • PDF

Evaporator Thermal Performance Prediction on Automotive Air Conditioning System (자동차 공조장치용 증발기의 전열 성능 예측)

  • Kim, J.S.;Kang, J.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.297-305
    • /
    • 1991
  • Recently, automotive air conditioning system manufacturers have been made a great efforts on the system compactness and high efficiency. This growing interest comes improvements in evaporator thermal performance, one of the most important factors affecting the performance of air conditioning system. In order to improve design of compact type evaporator, this study executes performs to develop a computer program for evaporator thermal performance prediction of automotive air conditioning system. The brief summaries of this study are as follows: 1) To predict the overall thermal performance of serpentine type evaporator, the new simulating method is developed. 2) The calculations are performed as functions of oil mass concentration and refrigerant two-phase distribution at inlet manifold of evaporator. 3) The validity of this simulating program is confirmed by comparing the predicted thermal performance results to experimental results of practical available evaporator. 4) Based on these results, suggestions are made to improve the thermal performance of evaporator.

  • PDF

Computer simulation of cooling load and cool-down performance in an automotive air-conditioning system (자동차 냉방부하 계산 및 초기 냉방성능 시뮬레이션)

  • Oh, S.H.;Lee, C.W.;Won, S.P.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.364-375
    • /
    • 1997
  • The fundamental theory and technical approach to aid design and development of an automotive air-conditioning system are presented. The evaluation methods for transient cooling load transferred to a passenger compartment and simulation of automotive air-conditioning components are outlined. The structure of the computer program, the experiemntal correlations, and the simulation results are also included. The total cooling load of the white-colored car is reduced upto 5% for that of the black-colored car when the car is running. Using the infrared reflectance glass, we can also obtain 5% reduction of the total cooling load for the common glass.

  • PDF

Dynamic Models and Intelligent Control Algorithms for a $CO_2$ Automotive Air Conditioning System (자동차 $CO_2$ 냉방시스템의 동적모델과 지능제어알고리즘)

  • Han, Do-Young;Jang, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.49-58
    • /
    • 2006
  • In the respect of the environmental protection viewpoint, $CO_2$ may be one of the most attractive alternative refrigerants for an automotive air-conditioning system. For the development of control algorithm of a $CO_2$ automotive air-conditioning system, characteristics of a $CO_2$ refrigerant should be considered. The high-side pressure of a $CO_2$ system should be controlled in order to improve the system efficiency. In this study, dynamic physical models of a $CO_2$ system were developed and dynamic behaviors of the system were predicted by using these models. Control algorithms of a $CO_2$ system were also developed and the effectiveness of these algorithm was verified by using dynamic models.

Development of Control Algorithms for a $CO_2$ Automotive Air Conditioner System by Using Experimental data (실험 데이터를 사용한 자동차 $CO_2$ 냉방시스템의 제어 알고리즘 개발)

  • Han, Do-Young;Jang, Kyung-Chang
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.681-686
    • /
    • 2006
  • In order to protect the environment from the refrigerant pollution, the $CO_2$ may be regarded as one of the most attractive alternative refrigerants for an automotive air-conditioning system. Control methods for a $CO_2$ system should be different because of $CO_2's$ unique propel-ties as a refrigerant. Especially, the high-side pressure of a $CO_2$ system should be controlled for the effective operation of the system. In this study, dynamic models of a $CO_2$ air-conditioning system were developed by using experimental data. Control algorithms for a high-side pressure control and an indoor air temperature control were developed and analysed by using the dynamic simulation program of a $CO_2$ system.

  • PDF