• Title/Summary/Keyword: Automotive Wheel Bearing

Search Result 36, Processing Time 0.019 seconds

A Selection of Initial Contact Angle of Automotive Wheel Bearing Units (차륜용 베어링 유니트의 초기 접촉각 선정)

  • 안태길;이상훈;현준수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.162-167
    • /
    • 2002
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance life of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, temperature, loading conditions, bearing geometry, internal clearance and so on. In this paper, we analyze the relation between loads and deformations of wheel bearing units. On the basis of it, we calculate the endurance life of wheel bearing units and suggest a method to determine the initial contact angle to achieve a maximum endurance life with considering stress concentration.

Contact Fatigue Life Prediction of Automotive Wheel Bearing (차량용 휠베어링의 접촉 피로수명 예측에 관한 연구)

  • Lee, Sang-Don;Moon, Kil-Hwan;Cho, Yong-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.137-143
    • /
    • 2008
  • For most bearings, it is a common requirement to have long durability. Especially wheel bearing fatigue life is the most important in automotive quality. The contact fatigue life analysis of automotive wheel bearing considering real raceway rough surface is presented in this paper. Contact stresses are obtained by contact analysis of a semi-infinite solid based on the use of influence functions; the subsurface stress field is obtained using rectangular patch solutions. Mesoscopic multiaxial fatigue criterion which can yield satisfactory results for non-proportional loading is then applied to predict fatigue damage. Suitable counting method and damage rule were used to calculate the fatigue life of random loading caused by rough surface. The life analysis considering real rough surface of wheel bearing raceway is in good agreement with the experimental results.

Selection of Internal Clearance for Automotive Wheel Bearings Considering an Assembling Procedure (조립과정을 고려한 차륜용 베어링의 내부틈새 선정)

  • 현준수;안태길;김성근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.51-57
    • /
    • 2000
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance lift of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, temperature, loading conditions, geometry, internal clearance and so on. Under the same geometry and loading conditions, the internal clearance is the most effective parameters on the endurance lift of a bearing. Generally, bearings have the longest lift with a little negative internal clearance. But it is very difficult to measure and modify the internal clearance after a wheel bearing is assembled. In this paper, we analyze the effect of an assembling procedure on the clearance of wheel bearings and suggest a method to determine optimal clearance for automotive wheel bearings by selecting initial bearing clearance.

  • PDF

Effects of Geometric Parameters on the Life of an Automotive Wheel Bearing Unit (차륜용 베어링 유니트의 수명에 대한 설계변수 기여도 해석)

  • 안태길;이상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.670-673
    • /
    • 2002
  • Automotive wheel bearings are one of the most important components to guarantee the service life of a passenger car. The endurance life of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, temperature, loading conditions, bearing geometry, internal clearance and so on. In this paper, we analyze the relation between loads and deformations of wheel bearing units. On the basis of it we calculate the endurance life of wheel bearing units and analyze the contribution of bearing geometric parameters on the endurance life by using Taguchi method.

  • PDF

Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness (수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.

Design Methodology of Automotive Wheel Bearing Unit with Discrete Design Variables (이산 설계변수를 포함하고 있는 자동차용 휠 베어링 유닛의 설계방법)

  • 윤기찬;최동훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.122-130
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design, this study proposes a design method for determining design variables of an automotive wheel-bearing unit of double-row angular-contact ball bearing type by using a genetic algorithm. The desired performance of the wheel-bearing unit is to maximize system life while satisfying geometrical and operational constraints without enlarging mounting spae. The use of gradient-based optimization methods for the design of the unit is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding and dynamic mutation rate is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. A computer program is developed and applied to the design of a real wheel-bearing unit model to evaluate the proposed design method. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the system life of an optimally designed wheel-bearing unit is enhanced in comparison with that of the current design without any constraint violations.

  • PDF

Sensitivity Analysis of Geometric Parameters on the Life of an Automotive Wheel Bearing Unit

  • Ahn, T.K.;Lee, S.H.;Yoon, H.W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.413-414
    • /
    • 2002
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance life of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions temperature loading conditions, bearing geometry, internal clearance and so on. In this paper, we calculate the endurance life of wheel bearing units and analyze the sensitivity of bearing geometric parameters on the life by using Taguchi method.

  • PDF

Prediction of the Reaction Force for Seal Lip Design with Wheel Bearing Unit (휠 베어링용 밀봉 시일 설계를 위한 시일 립의 밀착력 예측)

  • 김기훈;유영면;임종순;이상훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.165-172
    • /
    • 2001
  • Wheel bearing units were almost exclusively used for car front wheel, where the two ball rows are directly side by side with integrated rubber seal. The seal is of important for wheel bearing units due to the adverse environmental conditions with mud and splash water. The seal of wheel bearing units was designed to have geometry with multi lips, which elastic lip contacts and deforms with bearing. The equation of reaction force for deformed lip as cantilever beam was previously used for seal lip design. But it's result was not useful because deflection of the beam differs from lip's. In this study, deformed shape of the lip was assumed to and order function which is more similar to lip deformation and made the equation for reaction force prediction. The Reaction forces from each other equations were compared with results by FEA to prove usefulness of new equation.

  • PDF

Endurance Life Estimation of Taper Bearing Units (테이퍼 베어링 유닛의 내구수명 예측)

  • Ahn, Tae-Kil;Lee, Sang-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.160-164
    • /
    • 2007
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance life of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, temperature, loading conditions, bearing geometry, internal clearance and so on. Generally, a tapered roller bearing gives longer endurance life than that of an equivalent size ball bearing. Consequently, the application of taper bearing units will be increased for more compact design and extended warranty. In this paper, we derive the relation between loads and deformations of a taper bearing unit. On the basis of that, we calculate the endurance life of the taper bearing unit considering initial axial clearance.

Experimental Study of Driving Load Conditions for the Wheel Bearing Hub Unit of Passenger Car (승용차용 Wheel Bearing Hub Unit 설계를 위한 주행 하중조건의 실험적 연구)

  • 김기훈;유영면;임종순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.166-173
    • /
    • 2002
  • The wheel bearing hub unit is developed type of wheel bearing unified with the hub parts. It has advantage of reducing the weight and the number of components. And, it also improves uniformity of manufacturing quality, In order to design the wheel bearing hub units, many techniques are used such as load analysis, structure analysis and bearing characteristics analysis and so forth. These techniques need highly accurate load conditions founded on service conditions. In this study, to design the wheel bearing hub units used widespread in passenger cars, the service load was measured through driving tests on the public roads and in the special events. The public roads are classified into highway, intercity road, rural road, urban road, and unpaved road so as to know what the characteristics of the road loads are. The results of the tests showed that the wheel force was relative to the lateral acceleration, and also could be calculated from the lateral acceleration. The lateral acceleration was measured from 0.0G to 0.6G in general driving on the public roads, with different distributions in each road type. In special events, the maximum lateral acceleration was measured from 0.8G to 1.3G.