• Title/Summary/Keyword: Automotive Steel Sheets

Search Result 130, Processing Time 0.03 seconds

Influence of DIC Frame Rate on Experimental Determination of Instability and Fracture Points for DP980 Sheets under Various Loading Conditions (다양한 하중 조건에서 DP980 판재의 불안정성 및 파단점 결정시 DIC Frame Rate의 영향)

  • Noh, E.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.368-374
    • /
    • 2019
  • The past recent years have seen an increasing use of high-strength steel sheets in the automotive industry. However, the formability and damage prediction of these materials requires accurate acquisition of necking and fracture strains. Digital image correlation (DIC) is used to accurately capture the necking and fracture strains during testing. The fact that single time points of capturing vary with frame rate makes the need for an investigation necessary. For the high-strength steel DP980, the frame-rate dependences of the final necking and fracture strains values are analyzed here. To eliminate the influence of gauge length, the strains were measured locally by DIC. Results for three specimen shapes obtained with frame rates of 1 and 900 fps (frames per second) were considered and based on them, triaxiality failure diagrams (TFD) are established. It was observed that after diffuse necking, the deformation path departed from the initially linear one, and the stress triaxiality grew with ongoing deformation. It was further revealed that the frame rate-dependence of the necking strain was rather low (< 2%), whereas the fracture strain could be underestimated by up to 8% when the lower frame rate of 1 fps was used (compared with 900 fps). In this study, this issue is investigated while taking into consideration the three different triaxialities. These results demonstrate the importance of choosing an appropriate frame rate for the determination of necking and fracture strains in particular.

Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression

  • Zarei, Mohammad J.;Hatami, Shahabeddin;Gholami, Mohammad
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.519-529
    • /
    • 2022
  • Sandwich structures with the superior mechanical properties such as high stiffness and strength-to-weight ratio, good thermal insulation, and high energy absorption capacity are used today in aerospace, automotive, marine, and civil engineering industries. These structures are composed of moderately stiff, thin face sheets that withstand the majority of transverse and in-plane loads, separated by a thick, lightweight core that resists shear forces. In this research, the finite element technique is used to simulate a sandwich panel with a truss core under axial compressive stress using ABAQUS software. A review of past experimental studies shows that the bondline between the core and face sheets plays a vital role in the critical failure load. Therefore, this modeling analyzes the damage initiation modes and debonding between face sheet and core by cohesive surface contact with traction-separation model. According to the results obtained from the modeling, it can be observed that the adhesive stiffness has a significant influence on the critical failure load of the specimens. To achieve the full strength of the structure as a continuum, a lower limit is obtained for the adhesive stiffness. By providing this limit stiffness between the core and the panel face sheets, sudden failure of the structure can be prevented.

Hydrogen Embrittlement Evaluation of Subsurface Zone in 590DP Steel by Micro-Vickers Hardness Measurement (미소경도 측정에 의한 590DP강 Subsurface Zone 내 수소취성 평가)

  • Choi, Jong-Un;Park, Jae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.581-586
    • /
    • 2011
  • This study describes a hydrogen embrittlement evaluation of the subsurface zone in 590DP steel by micro-Vickers hardness measurement. The 590DP steel was designed to use in high-strength thin steel sheets as automotive materials. The test specimens were fabricated to 5 series varying the chemical composition through the process of casting and rolling. Electrochemical hydrogen charging was conducted on each specimen with varying current densities and charging times. The relationship between the embrittlement and hydrogen charging conditions was established by investigating the metallography. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of the subsurface zone in addition to the microscopic investigation. The micro-Vickers hardness increased with the charging time at the surface. However, the changing ratio and maximum variation of hardness with depth were nearly the same value for each test specimen under the current density of 150 mA/$cm^2$ and charging time of 50 hours. Consequently, it appears that hydrogen embrittlement in 590DP steel can be evaluated by micro-Vickers hardness measurement.

Study on the characteristic and behavior of dross in galvanizing bath (용융아연도금욕중 드로스의 특성 및 거동연구)

  • 남궁성;허보영
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.313-320
    • /
    • 2001
  • It is well known that the amount of hot-dip Zn coated sheet steels used for automotive is rapidly increasing. As hot-dip steel sheets show good corrosion resistance and excellent formability, the demand for outer panel of automotive has been increased in order to satisfy with the requirement of high surface qualify. There are many kinds of factors influencing on the surface quality and the dross control in the galvanising bath is regarded as one of the most important thing. In this study the characteristic and growing behavior of dross in the galvanizing bath were investigated and the effect of dross on the surface defect of GA was surveyed. The dross defects on the GA sheet steels result from bottom dross whose diameter are larger 50$\mu\textrm{m}$ in the Zn pot. Dross-free state exist for about 30 hours from starting time of GA production.

  • PDF

A Study on the Mechanical Properties of MAG Weld on Ferritic Stainless Steel Sheets (페라이트계 스테인리스 강 MAG 용접의 기계적 물성에 관한 연구)

  • Lee, Gyeong-Cheol;Kim, Jae-Seong;Kim, Hyun-Jae;Lim, Kyoung-Ho;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.27-31
    • /
    • 2009
  • Ferritic stainless steels have a good heat resistance and economic advantage. They are used for applications such as automotive exhaust systems where resistance to general corrosion is superior to carbon steels. However, there are not enough research for ferritic stainless steels on weldability mainly used as automotive exhaust manifolds. In this study, mechanical and microstructure properties of as-welded STS 429L and STS 444 ferrite stainless steels were confirmed by tensile, bending, hardness test, optical microscopy and scanning electron microscopy. Tensile strength of the STS 444 is higher than the STS 429L when it is a raw material. In contrast to this fact, STS 429L indicated higher tensile strength after butt welded. In addition, the hardness have a increasing tendency as getting down on the bead.

Study on the Springback Reduction of Automotive Advanced High Strength Steel Panel (자동차 초고강도 강판 패널의 스프링백 저감에 관한 연구)

  • Kim, B.G.;Lee, I.S.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.488-493
    • /
    • 2009
  • The very big springback of advanced high strength steel(AHSS) sheets invokes undesired shape defects, which can be generally eliminated by die correction or process parameter control. The springback reduction by controlling the forming process parameters is easy for the application, but limited for the bulky achievement. In this study, the effective die correction method, which obtains the modification of tool shape from the relationship between die design variable and springback, is introduced and is applied to the TWB tool of automotive side rail to show the validity and usefulness. Among the die correction trials repeatedly performed, the first trial is carried out by correcting the tool shape to the opposite direction to the springbacks of several tool sections. Next trials are done by extrapolating the springbacks of among the original tool uncorrected and the tools corrected negative amounts of the springback and by finding tool shapes without springbacks. After the angle of side wall and radius of curvature of horizontal bottom floor are chosen as design variables in the tool design of side rail, the tool shape is corrected 3 times. The accuracy of final shape within the assembly limit of 1mm and the springback reduction of 75.8% compared to the uncorrected tool are achieved.

Quantitative Evaluation of Shape Accuracy in a Hat-type Product with UHSS according to the Forming Procedure (성형공법에 따른 초고강도 모자형 박판부품 형상정밀도 평가)

  • Choi, Byeung Hyeun;Kim, Se Ho;Kim, Heung Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1111-1117
    • /
    • 2013
  • In this paper, the shape accuracy of the stamped hat-type product is quantified and analyzed with ultra high strength steel (UHSS) sheets. The shape of the hat-type product is designed in order to simplify the geometry of the side sill and the stamping methodology is proposed in order to verify the effect of the stamping procedure on the springback amount. Experiments and finite element analyses are conducted with four kinds of the forming sequences. The springback amounts are measured and compared according to the forming procedure with the embossing shape. Experimental result in company with analysis one illustrate that the springback amount is reduced with embossing in the padding operation. They also fully demonstrates the proposed forming procedure and the analysis method can be effectively applied to the process design for producing parts with ultra high strength steel.

Porosity Reduction during Gas Tungsten Arc-Gas Metal Arc Hybrid Welding of Zinc Coated Steel Sheets (II) - Hybrid Welding Results (GTA-GMA 하이브리드공정에 따른 자동차용 아연도금강판의 용접부 기공감소 (II) - 하이브리드공정 적용 결과)

  • Ahn, Young-Nam;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.48-54
    • /
    • 2016
  • The use of Zn coated steel has increased in the automotive industry due to its excellent corrosion resistance. Conventionally the BIW(body-in-white) structure and the hang-on parts have been made of Zn coated steel and more recently Zn coated steel began to be applied in the chassis parts. During gas metal arc (GMA) welding of the chassis part, lap fillet joint used to be adopted but spatter generation and porosities are most important concerns. In the industrial applications, an intentional joint gap was made to avoid the weld defects but it is not easy to control the size of joint gap. In this research, gas tungsten arc (GTA) is combined with GMA welding where GTA precedes GMA. As pulsed arc was adopted as GMA, GTA was oscillated along the longitudinal direction by pulsing GMA, but the arc oscillation did not disturb the molten droplet transfer of GMA welding. By increasing the distance between GTA and GMA, the length of weld pool increased and porosity could be reduced. Moreover porosity in the welds was fully removed when the distance between two arcs was 15 mm.

A Study on Clinching Characteristics for A6451 Aluminum and Galvanized Steels and the Application of Clinching Technology to Automotive Parts (A6451 알루미늄 및 용융아연도금강판의 클린칭 접합특성 및 접합기술의 차체 부품 적용 연구)

  • Kwon, Eui-Pyo;Park, Hyun-kyung
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.886-893
    • /
    • 2018
  • In this study, clinching characteristics of aluminum and galvanized steels were investigated for the application of clinching as a joining technique to aluminum wheelhouse assembly. A6451 aluminium alloy and galvanized steel sheets were joined by hybrid joining(clinching + adhesive bonding). Tensile-shear load and fracture mode of hybrid joints were investigated. Maximum tensile-shear load of hybrid joints was about six times higher than that of clinched joints without adhesive. Energy absorption values of hybrid joints were higher than those of clinched joints without adhesive as well as resistance spot welded steel joints. Developed aluminum wheelhouse assembly showed higher static stiffness than the existing steel parts. Aluminum wheelhouse inner panel unit was 44% lighter than the steel unit, and the final assembled aluminum wheelhouse was 14.6% lighter than the existing steel parts.

Effect of Coiling Temperature and Alloying Elements on the Mechanical Properties and Precipitation Behavior in High Strength Hot Rolled Steel Sheets (고강도 열연강판의 기계적 성질과 석출거동에 미치는 권취온도와 합금원소의 영향)

  • Kang, S.S.;Lee, O.Y.;Han, S.H.;Jin, K.G.;Seong, B.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.683-690
    • /
    • 2003
  • The high strength low alloy(HSLA) steels microalloyed with Nb, Ti and V have been widely used as the automobile parts to decrease weight of vehicles. The effects of process conditions are investigated in the aspects of the precipitation behavior and the mechanical properties of HSLA steel microalloyed with Nb and Ti using TEM, SANS and mechanical testing. When Ti was added to a 0.07C-1.7Mn steel which was coiled at $500^{\circ}C$, the specimen revealed the property of higher tensile strength of 853.1 MPa and the stretch-flangeability of 60%. The stretch-flangeability was increased up to 97.8% for coiling temperature above $700^{\circ}C$. The precipitation hardening cannot be achieved in the 0.045C-1.65Mn steel which was the lower density of fine precipitates. However, the 0.07C-1.7Mn steels containing Nb and/or Ti which was coiled at X$/^{\circ}C$ have a high precipitates density of $2${\times}$10^{ 5}$/$\mu$㎥. The high strength of these steels was attributed to the precipitation hardening caused by a large volume froction of (Ti, Nb)C precipitates with a size below 5 nm in ferrite matrix.