• Title/Summary/Keyword: Automotive Seat Frame

Search Result 44, Processing Time 0.028 seconds

A Study on the Development of Aluminum Seat Frame for Commercial Bus (상용 버스용 알루미늄 시트 프레임의 개발에 관한 연구)

  • 우호광;이상복;김상범;김헌영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.91-100
    • /
    • 2004
  • This study presents the development of a new aluminum seat frame for the commercial bus. Back moment and seat belt anchorage analysis of the conventional steel seat frame was conducted as a base model. Effective aluminum section dimensions for aluminum pipe were calculated from equivalent stiffness and equivalent weight study. Back moment and seat belt anchorage strength with the developed aluminum seat frame were compared to those of the base model. Additionally, to pass the fatigue test, shape modification of side frame assembly was conducted. From this study we could reduce the weight of seat frame more than 5 kg. And the current analysis model and procedure can provide useful informations in designing a new commercial car seat and can reduce the overall design cost and time.

A Convergence Study through Durability Analysis due to the Number of Automotive Seat Frame Supports (자동차 시트 프레임 지지대 개수에 따른 내구성 해석을 통한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.155-160
    • /
    • 2018
  • Automotive seat is a part to supply the convenience and safety of driver at driving. Recently, the seat has the role to protect driver from the outside impact or vibration and give the convenience except such a usage as chair. The design on structural function of the seat frame is important like the impact safety and durability. In this study, the seat is designed by adding one hollow rod to the part of seat back frame in order to enhance the structural safety and durability. This study was carried out by using CATIA and ANSYS as the design and analysis programs. As this study result through the structural and vibrational analyses, model 4 was seen to have the durability more superior than the other models. By utilizing this result, it is thought to be the useful material at designing the automotive seat frame with durability. It is possible to be grafted onto the convergence technique at the automotive seat frame and show the esthetic sense.

The Finite Element Analysis of Car Seat Frame According to The FMVSS Strength Test (FMVSS 강도테스트에 다른 자동차 시트프레임의 유한요소해석)

  • 이호용;임중연;범형택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.241-247
    • /
    • 1999
  • This study presents the structural analysis of car a seat frame by the finite element method. The load-deformation characteristics of seat frame are simulated according to the test requirements by FMVSS. Three dimensional modeling technique is applied to the components of the seat frame. The shell, solid , gap and rigid elements are employed to model the car seat frame assembly. Numerical results show that the recliner and kunckle plate are identified as the possible weak part of frame, and the results are well consistent with the experimental static load test. The current analysis model can provide useful informations to design a new car seat and can reduce the overall design cost and time.

  • PDF

Durability Analysis of Automotive Seat Frame by Shape (자동차 시트 프레임의 형상별 내구성 해석에 관한 연구)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.14-21
    • /
    • 2020
  • The automotive seat appropriately absorbs the vibrations or shocks transmitted through a vehicle when it is in operation so as to provide a comfortable ride for passengers. In this study, the structural strength and durability of each model were investigated using structural analysis. The natural and critical frequencies at the seat were analyzed through vibration analysis. Through the results of this study on automotive seat frame models, the durability against the load and vibration is shown to be dependent on the configuration of the model.

A Study on the Lightweight Design of a Seat Frame in Automotive Vehicles (자동차 시트 프레임의 경량화 설계에 관한 연구)

  • 최금호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.83-89
    • /
    • 1999
  • A seat frame structure in automotive vehicles made of polymer matrix composite to achieve weight reduction at low cost was developed. In order to design and manufacture the actual product studies on material selection and structural analysis were performed. Structural analysis was performed with a finite element method. The analysis was done for several cases suggested in various safety regulations. Each results was utilized to modify the actual shape to obtain a lighter, safer and more stable design. The final design was used to produce a sample bottom plate of the seat structure with reinforced by X-shape frame. Substitution of the material resulted in a weight reduction effect with equivalent strength fatigue and impact characteristics.

  • PDF

Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat (자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석)

  • Kim, Sung-Soo;Kim, Key-Sun;Choi, Doo-Seuk;Park, Sang-Heup;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4956-4962
    • /
    • 2012
  • Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the direct contact part with human body. Automotive seat must have the sufficient rigidity and strength at the same time with ride comfort. In this study, cushion frame and back frame at car seat are modelled with 3D. There are structural simulation analyses about 3 kinds of tests on torsion strength, vertical load strength and back frame strength. In the analysis result, the initial total deformation and the permanent total deformation has the maximum values of 5.4821 mm and 0.02539mm respectively at the torsion strength test of cushion frame. Total deformations at front and rear end parts of cushion frame become the values of 2.1159mm and 0.0606mm respectively at the test of vertical load strength of cushion frame. In case of more than this load, the maximum value of total deformation also becomes 3.1739mm. The maximum value of total deformation becomes 0.18634mm at 3 kinds of the strength tests on back frame. By the study result of no excessive deformation and no fracture cushion frame and back frame at automotive seat, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

A Study on the Weight Optimization for the Passenger Car Seat Frame Part (상용승용차 시트프레임 부품의 중량 최적화에 관한 연구)

  • Jang, In-Sik;Min, Byeong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.155-163
    • /
    • 2006
  • Car seat is one the most important element to make comfortable drivability. It can absorb the impact or vibration during driving state. In addition to those factors, it is needed to have enough strength for passenger safety. From energy efficiency and environmental point of view lighter passenger car seat frame becomes hot issue in the auto industry. In this paper, weight optimization methodology is investigated for commercial car seat frame using CAE. Optimized designs for seat frame are developed using commercially available finite element code(ANSYS) and design of experiment method. At first, car seat frame is modelled using 3-D computer aided design tool(CATIA) and simplified for finite element modelling. Finite element analysis is carried out for the case of FMVSS 202 Head Restraint test to check the strength of the original seat frame. Two base brackets are selected as optimized elements that are the heaviest parts in the seat frame. After finite element analysis for the brackets with similar load condition to the previous test optimization technique is applied for 10% to 50% weight reduction. Design of experiment is utilized to obtain optimization design for the bracket based on the modified 50% weight reduction model in which outer shape of the bracket is conserved. Weight optimization models result in the decrease of the strength in spite of weight reduction. The more design points should be considered to get better optimized model. The more advanced optimization technique may be utilized for more parts of the seat frame to increase whole seat frame characteristics in the future.

A Study on the Durability Design of an Automotive Seat Frame (자동차 시트 프레임 구조의 내구성 향상 설계에 관한 연구)

  • 우창수;조현직;구정서;권재도
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.50-57
    • /
    • 2004
  • Structural analysis and fatigue tests have been performed to develop design and evaluation technologies of automotive seat frames. Under the back moment loading condition, the numerical simulation unveiled the maximum stress up to the yield strength at the side frame bracket. To measure the stresses under the test condition, strain gauges were attached to some weakest points of the side frames. the measured strains are in good agreements with the CAE results. On the other hand, some fatigue tests have been performed using the side frame bracket specimens made of various welding types to evaluate their durabilities. From the fatigue tests and the numerical analyses, it was recommended that the bracket welding position should be moved upward.

Durability Analysis of Automotive Seat According to the Shape of Seat Back Frame (시트백 프레임의 형상에 따른 자동차 시트의 내구성 해석에 관한 연구)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.16-23
    • /
    • 2020
  • Vehicle seats provide a comfortable ride for passengers by properly absorbing vibrations and shocks transmitted during driving. Vibration analyses on three models with different shapes were carried with the same material properties and constraint conditions. By varying the height of the seat-back, models 1, 2, and 3 were designed according to the inclined angle of the seat-back frame. Models 1, 2, and 3 were modeled with relatively simple designs using CATIA. The areas touching the buttocks of passengers show the most deformation. This work shows that seat durability and stability can vary depending on the shape of the seat design.

Structural Study of Automotive Seat Frame with High Tension Steel Plate Using Analysis and Experiment (해석과 실험을 이용한 고장력 강판으로 된 자동차 시트 프레임의 구조적 연구)

  • Kim, Key-Sun;Cho, Ho-Sun;Kim, Young-Chun;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • As research development of seat frame is being studied actively, the total deformation of seat frame made of high tension steel plate(HTSP) is examined in this study. The seat frame made of SPFC 980 t=2mm with HTSP is tested to obtain total deformation through repeated fatigue durability tester and total deformation is analyzed by simulation under the same condition as experiment. After analyzing by comparing the results of experiment and analysis, structural stabilities of seat frame models with SPFC 780 t=2mm and SPFC 780 t=1.5mm are investigated by FEM analysis on the basis of these results. And it is considered that which model is more suitable at commercial use can be found through this study result.