• 제목/요약/키워드: Automotive Press Die

검색결과 62건 처리시간 0.026초

프레스 금형의 가공 및 제작 공정의 자동화에 관한 연구 (Study on the Automation of Manufacturing and production Process for Press Die)

  • 최계광;박찬교
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2009년도 추계학술발표논문집
    • /
    • pp.275-278
    • /
    • 2009
  • 프레스 금형의 가공 및 제작 공정의 자동화란 불필요한 반복 작업을 피하여 시간을 절약하고 표준 품질의 가공물을 얻고자 하는 것이다. 자동화의 범위는 3차원 금형설계, 머시닝 센터, 와이어 컷 방전 가공, 도면작업까지를 포함하는 것이다. 자동화 공정이 구축이 완료되면 동일한 품질의 가공품을 얻을 수 있고 가공정보는 3D 카탈로그 및 다이 셋을 기준으로 작업을 한다. 1개의 부품을 금형설계자동화 모듈을 이용하여 3차원으로 금형설계를 완료하고 난후에 동일한 환경에서 프레스 금형의 가공 및 제작을 할 때 이의 공정자동화에 관하여 연구한 것이다.

  • PDF

자동차 연료탱크용 링 플레이트의 신 제조공법 (A New Manufacturing Process for the Ring Plate of Automobile Fuel Tank)

  • 채명수;임용희;서영성;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.311-315
    • /
    • 2008
  • Currently, in automobile industry. the efforts to reduce the manufacturing cost by changing the process of manufacturing are continually performed. In this paper, we proposed a new manufacturing process, the roll bending of a ring plate of automotive fuel tank instead of conventional press blanking process to reduce material loss and manufacturing cost. Finite element analysis was used to optimize the roll bending process to assure rectangular cross-section of the ring plate. Also, spring-back analysis after the roll bending was performed and dimension of the bending die considering spring-back was analyzed. Finally, we verified a possibility for realization of the proposed method shape with prototypes.

  • PDF

디지털 서보 프레스를 이용한 고강도강 성형제품의 스프링백 경향 변화 (Change in Springback Tendency during Forming of a Hat-type Product with High Strength Steel Using a Digital Servo Press)

  • 강경훈;김세호;노현철
    • 소성∙가공
    • /
    • 제25권1호
    • /
    • pp.21-28
    • /
    • 2016
  • In the current study, reduction of springback is quantified and the reasons for the reduction are investigated. The testing involved a digital servo motion applied to a U-draw bending to produce a hat-type product from high strength steels such as DP780 and DP980. The change in springback is compared between the constant speed motion and three kinds of servocontrolled motions during forming experiments. In order to predict the springback for the servo-controlled tool motion, a finite element method was utilized for the springback analysis considering a kinematic hardening model for the steel. The comparison of springback between the analysis and the experiments shows that they have similar tendencies. Also, the analysis results indicate that the springback reduction is greatly influenced by a decrease in the friction coefficient, which originates from the contact and detach phenomena between the tooling and the blank during the up-and-down motion of the upper die following the servo-controlled motion.

차량 엔진크레들용 크로스멤버 부품의 하이드로-포밍가공 및 해석 (Hydro-forming and Simulation of Cross Member Parts for Automotive Engine Cradle)

  • 김기주;이용헌;배대성;성창원;백영남;손일선
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.98-103
    • /
    • 2009
  • The environment and energy related problem has become one of the most important global issues in recent years. One of the most effective ways of improving the fuel efficiency of automobiles is the weight reduction. In order to obtain this goal the hydroforming technology has been adapting for the high strength steel and its application is being widened. In present study, the chassis components (mainly cross members of engine cradle) simulation and development by hydroforming technology to apply high strength steel having tensile strength of 440 MPa grade is studied. In the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydroformability in details. Overall possibility of hydroformable chassis parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, performing and hydroforming. In the die design stage, all the components of prototyping tool were designed and interference with press was investigated from the point of geometry and thinning.

자동차 산업에서 뿌리기술의 중요성 및 최신 용접/접합 기술 (Importance of Fundamental Manufacturing Technology in the Automotive Industry and the State of the Art Welding and Joining Technology)

  • 장인성;조용준;박현성;소득영
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.21-25
    • /
    • 2016
  • The automotive vehicle is made through the following processes such as press shop, welding shop, paint shop, and general assembly. Among them, the most important process to determine the quality of the car body is the welding process. Generally, more than 400 pressed panels are welded to make BIW (Body In White) by using the RSW (Resistance Spot Welding) and GMAW (Gas Metal Arc Welding). Recently, as the needs of light-weight material due to the $CO_2$ emission issue and fuel efficiency, new joining technologies for aluminum, CFRP (Carbon Fiber Reinforced Plastic) and etc. are needed. Aluminum parts are assembled by the spot welding, clinching, and SPR (Self Piercing Rivet) and friction stir welding process. Structural adhesive boning is another main joining method for light-weight materials. For example, one piece aluminum shock absorber housing part is made by die casting process and is assembled with conventional steel part by SPR and adhesive bond. Another way to reduce the amount of the car body weight is to use AHSS (Advanced High Strength Steel) panel including hot stamping boron alloyed steel. As the new materials are introduced to car body joining, productivity and quality have become more critical. Productivity improvement technology and adaptive welding control are essential technology for the future manufacturing environment.

배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구 (A Study on Net-shape Technology of Automotive Lock-up Hub using Cold Back Pressure Forming)

  • 권용철;이정환;이영선
    • 소성∙가공
    • /
    • 제17권2호
    • /
    • pp.124-129
    • /
    • 2008
  • Net shape forging technologies give many effects into the costs and qualities for the finished products. So, the studies to reduce the additional machining amount are very important in forging industry. Specially, there are two main topics in cold forging industry, such as, tool life and precision forging. In this study, new forging technique was proposed to eliminate the machining process for fixing up the length and improve the lead accuracy of gear. The luck-up hub is manufactured through many processes, such as upsetting, piercing and direct extrusion. The gear is formed in direct extrusion process; however, lead accuracy of the gear is over allowance limit. Therefore, the additional sizing process must be added. In this study, process design for closed-die forging of a lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

CAE 프로그램을 이용한 브래킷 경량화에 관한 연구 (A study on weight reduction of bracket using CAE program)

  • 강형석;한봉석;한유진;최두선;김태민;신봉철;송기혁
    • Design & Manufacturing
    • /
    • 제12권3호
    • /
    • pp.25-30
    • /
    • 2018
  • Recently The automotive industry is trying to increase the energy efficiency by reducing the weight of the car body and engine components as a way to achieve high energy efficiency. In particular, the reduction of the weight of the vehicle through the weight reduction of the vehicle body has the advantage that the fuel consumption and the output can be improved. But at the same time, there is the disadvantage that the strength becomes weak due to the reduction of the material thickness. Therefore, in order to overcome these disadvantages, materials with high strength according to the unit thickness have been actively developed, and researches for applying them have also been increasing. In this study, we will investigate the application of cold rolled steel sheet, which is a lightweight material, to a horn bracket that secures a installed in an automobile engine room. The horn bracket secures the horn on the car engine and is bolted to the outer wall of the engine. The momentum is acted on the bracket due to the distance between the bolt fastening part and the car horn installed on the bracket end side. Therefore, the body part of the bracket is more likely to be destroyed by the influence of the continuous stress. In this paper, design optimization for weight reduction and strength enhancement was performed to solve this problem, and possibility of applying the rolled steel sheet material as lightweight material by tensile test and fabrication was confirmed.

프로엔지니어(Pro/E) 기반 금형설계 지원 소프트웨어 툴 개발 (Development of A Software Tool for Supporting Metal Mold Design Based on The Pro/E CAD System)

  • 유호영
    • 한국산학기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.1014-1020
    • /
    • 2012
  • 본 논문은 3D 캐드모델을 기반으로 작업자의 수작업 및 설계오류를 최소화하는 금형설계 지원 툴 개발에 초점을 맞춘다. 금형설계 지원범위는 자동차 산업의 프레스 금형설계 공정에서 필수 요소인 선직 곡면 생성 및 옵셋, 패딩력 자동산출, 수정사항을 반영하는 재료표 자동출력, 홀 가공데이터 자동 산출, 원소재 크기 출력 및 검증 등 이다. 개발한 시스템을 주요 범용 3D 모델러 중 하나인 프로엔지니어의 확장 메뉴형태로 탑재하기 위하여 프로엔지니어 API와 Visual C++를 사용하여 개발하였다.

다단 미세 치형 허브 기어의 프레스 성형기술개발 (Development of Press Forming Technology for the Multistage Fine Tooth Hub Gear)

  • 김동환;이정민;이상호;변현상;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.769-772
    • /
    • 2005
  • This paper deals with the aspects of die design for the multistage fine tooth hub gear in the cold forging process. In order to manufacture the cold forged product fur the precision hub gear used as the ARD 370 system of bicycle, it examines the influences of different designs on the metal flow through experiments and FE-simulation. To find the combination of design parameters which minimize the damage value, the low gear length, upper gear length and inner diameter as design parameters are considered. An orthogonal fraction factorial experiment is employed to study the influence of each parameter on the objective function or characteristics. The optimal punch shape of fine tooth hub gear is designed using the results of FE-simulation and the artificial neural network. To verify the optimal punch shape, the experiments of the cold forging of the hub gear are executed.

  • PDF

Deformation behaviour of steel/SRPP fibre metal laminate characterised by evolution of surface strains

  • Nam, J.;Cantwell, Wesley;Das, Raj;Lowe, Adrian;Kalyanasundaram, Shankar
    • Advances in aircraft and spacecraft science
    • /
    • 제3권1호
    • /
    • pp.61-75
    • /
    • 2016
  • Climate changes brought on by human interventions have proved to be more devastating than predicted during the recent decades. Recognition of seriousness of the situation has led regulatory organisations to impose strict targets on allowable carbon dioxide emissions from automotive vehicles. As a possible solution, it has been proposed that Fibre Metal Laminate (FML) system is used to reduce the weight of future vehicles. To facilitate this investigation, FML based on steel and self-reinforced polypropylene was stamp formed into dome shapes under different blank holder forces (BHFs) at room temperature and its forming behaviour analysed. An open-die configuration was used in a hydraulic press so that a 3D photogrammetric measurement system (ARAMIS) could capture real-time surface strains. This paper presents findings on strain evolutions at different points along and at $45^{\circ}$ to fibre directions of circular FML blank, through various stages of forming. It was found initiation and rate of deformation varied with distance from the pole, that the mode of deformations range from biaxial stretching at the pole to drawing towards flange region, at decreasing magnitudes away from the pole in general. More uniform strain distribution was observed for the FML compared to that of plain steel and the most significant effects of BHF were its influence on forming depth and level of strain reached before failure.