• 제목/요약/키워드: Automotive Exhaust System

검색결과 379건 처리시간 0.018초

액상 분사 LPG 엔진 성능 및 차량 배기 배출물 특성에 관한 연구 (LPLi Engine Performance and Vehicle Exhaust Emission Characteristics)

  • 임종훈;명차리;박심수;양승주
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.15-21
    • /
    • 2003
  • LPG is considered as one of the most prominent alternative automotive fuels in worldwide. However, conventional mixer system can not meet the emission regulations as the mileage accumulation increased. Recently, much attention is focused on the development of LPG liquid injection fuel systems to increase the engine performance and reduce the exhaust emissions. This study evaluates the LPLi(Liquid Phase LPG injection) engine performance and exhaust emission characteristics using a 3.0 liter LPG engine. The fuel supply system and engine management system were changed from FBM into LPLi to control the precise mixture ratio and optimized spark advance.

배기 브레이크용 솔레노이드 밸브의 특성 해석 (Characteristics Analysis of the Solenoid Valve for Exhaust Brake)

  • 윤소남;함영복
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.190-195
    • /
    • 2004
  • An exhaust brake system is composed of a gate valve, a pneumatic cylinder and an on-off solenoid valve. An on-off solenoid valve which is a key component of the exhaust brake system ought to have characteristics such as high reliability and long life for reducing the foot brake and tires damage, and for driver's fatigue relief of middle/large size vehicles running a long distance. In this paper, an on-off solenoid valve which is used for vehicle brake system was studied. For the performance evaluation of the on-off solenoid, electromagnetic characteristics and dynamic characteristics are analyzed. On the basic study for the performance improvement of exhaust brake system, pneumatic circuit and pneumatic valve of on-off solenoid type were suggested and the performance of pneumatic valve through the test procedure was evaluated.

급가속시 자동차 흡기계의 능동소음제어 성능향상 (The Performance Improvement for an Active Noise Contort of Automotive Intake System under Rapidly Accelerated Condition)

  • 이충휘;오재응;이유엽;이정윤
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.183-189
    • /
    • 2003
  • The study of the automotive noise reduction has been concentrated on the reduction of the automotive engine noise because the engine noise is the major cause of automotive noise. However, many studies of automotive engine noise led to the interest of the noise reduction of the exhaust and intake system. Recently, the active control method is used to reduce the noise of an automotive exhaust and intake system. It is mostly used the LMS(Least-Mean-Square) algorithm as an algorithm of active control because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, Filtered-X LMS (FXLMS) algorithm is applied to an Active Noise Control system. However, the convergence performance of LMS algorithm went bad when the FXLMS algorithm was applied to an active control of the induction noise under rapidly accelerated driving conditions. So, in order to solve this problem, the modified FXLMS algorithm is proposed. In this study, the improvement of the control performance using the modified FXLMS algorithm under rapidly and suddenly accelerated driving conditions was identified. Also, the performance of an active control using the LMS algorithm under rapidly accelerated driving conditions was evaluated through the theoretical derivation using a chirp signal to have similar characteristics with the induction noise signal.

합성가스를 첨가한 SI 엔진의 냉간시동 유해 배기가스 저감에 관한 연구 (A Study on Reductions of Cold Start Emissions with Syngas Assist in an SI Engine)

  • 송춘섭;가재금;홍우경;박정권;조용석;김창기
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.114-120
    • /
    • 2011
  • Fuel reforming technology for the fuel cell vehicles has been frequently applied to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this paper, syngas was feed to a 2.0 liter SI engine with MPI to improve exhaust emissions under cold start and early state of idle condition. Syngas fraction is varied to 0%, 10%, 25%, with various ignition timings. Exhaust emission characteristics and the exhaust system temperature were measured to investigate the effects of syngas addition on cold start. Result showed that HC emission could be dramatically reduced due to the fact that syngas has $H_2$ and no HC as components. The amount of $NO_x$ emission was decreased with the increase of syngas fraction. Because the dilution effect of $N_2$ and the retard of ignition timing reduces the peak combustion temperature inside the cylinder. Exhaust gas temperature was lower than that of gasoline feeding condition. Retarded ignition timing, however, resulted in increased exhaust gas temperature approximated to gasoline condition. It is supposed that the usage of syngas in an SI engine is an effective solution to meet the future strict emission regulations.

배기 압력 상승률에 의한 실화 검출 (The Misfire Detection by the Exhaust Pressure Ascent Rate)

  • 김세웅;최미호;심국상
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.1-7
    • /
    • 2003
  • This paper proposes a method to detect misfired cylinders by the exhaust pressure ascent rate. The misfire is generated by faults of electric system or faults of fuel delivery system. It is one of the abnormal combustions. Therefore, it increases the unburned hydrocarbon and the carbon monoxide and affects a bad influence to the 3-way catalyst. The misfire causes to decrease the power of the engine and increase the consumption of the fuel. Early detection and correction of the misfired cylinders can prevent these unusual phenomena. The misfired cylinders can be detected by the comparison of exhaust pressure ascent rate during each cycle. The exhaust pressure ascent rate is defined as pressure rise per time. Our experimental results showed that the proposed method is effective in the detection of the misfired cylinders on a gasoline engine regardless loads and revolutions of the engine.

LOW CYCLE THERMAL FATIGUE OF THE ENGINE EXHAUST MANIFOLD

  • Choi, B.L.;Chang, H.;Park, K.H.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.297-302
    • /
    • 2004
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermo-mechanical cyclic loading. As a failure of the exhaust manifold is mainly caused by geometric constraints of the less expanded inlet flange and cylinder head, the analysis is based on the exhaust system model with three-dimensional temperature distribution and temperature dependent material properties. The result show that large compressive plastic deformations are generated at an elevated temperature of the exhaust manifold and tensile stresses are remained in several critical zones at a cold condition. From the repetition of these thermal shock cycles, maximum plastic strain range (0.454%) could be estimated by the stabilized stress-strain hysteresis loops. It is used to predict the low cycle thermal fatigue life of the exhaust manifold for the thermal shock test.

열전발전 적용을 위한 가솔린차량의 전력 및 배기열 에너지 분석 연구 (Analysis of the Electric Energy and Exhaust Heat Energy for the Application of Thermo-Electric Generation in a Gasoline Vehicle)

  • 이영재;표영덕;김강출
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.99-105
    • /
    • 2002
  • About 70% of energy input to internal combustion engine is rejected to atmosphere by heat. By utilizing this waste heat, a plenty of energy can be conserved in nationwide. One of possible ways is the thermoelectric generation to utilize engine's waste heat to provide auxiliary electric power. Under th is concept, we have been developing the thermoelectric generation system to replace the alternator by converting the waste heat in the engine's exhaust directly to electricity This system may reduce the shaft horse power of the engine, then improves the vehicle fuel economy and the exhaust emissions. In the present study, the characteristics of the electric energy and exhaust heal energy in city and highway mode driving conditions are analysed by using a gasoline passenger car. These results would be used to determine the optimum design parameters of the thermoelectric generation system.

배기계 압력 변동을 이용한 가솔린 기관의 실화 검출 -단수 실린더 실화- (Fluctuations in the Exhaust System -Single Cylinder Misfire-)

  • 심국상;복중혁;김세웅
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.210-217
    • /
    • 1998
  • This paper describes the method for detection of the misfired cylinder using the pressure fluctuations occurred in the exhaust system on an MPI gasoline engine. If misfire is occurred in the cylinder of the gasoline engine, the power of engine gets lost, the fuel consumption and the exhaust emission are increased and the vibration is caused by unsteady torque. Therefore early detection and correction of misfire play a very important role in the proper performance and the exhaust emission. This paper suggests method of misfire detection which affect engine performance. The method is a comparison of average pressure index during the displacement period. Experimental results showed that the method using the pressure fluctuations in the exhaust system is proven to be effective in the detection of misfire on gasoline engine regardless loads and revolutions of the engine. In addition, this method, using the pressure fluctuations in exhaust system is easier than other methods and is not a need of additional reconstruction of engine.

  • PDF

CHANGE OF CATALYST TEMPERATURE WITH UEGI TECHNOLOGY DURING COLD START

  • CHO Y.-S.;KIM D.-S.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.445-451
    • /
    • 2005
  • Most of the pollutants from passenger cars are emitted during the cold-transient phase of the FTP-75 test. In order to reduce the exhaust emissions during the cold-transient period, it is essential to warm up the catalyst as fast as possible after the engine starts, and the Unburned Exhaust Gas Ignition (UEGI) technology was developed through our previous studies to help close-coupled catalytic converters (CCC) reach the light-off temperature within a few seconds after cold-start. The UEGI system operates by igniting the unburned exhaust mixture by glow plugs installed upstream of the catalyst. The flame generates a high amount of heat, and if the heat is concentrated on a specific area of monolith surface, then thermal crack or failure of the monolith could occur. Therefore, it is very important to monitor the temperature distribution in the CCC during the UEGI operation, so the local temperatures in the monolith were measured using thermocouples. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches the light-off temperature earlier than the baseline case. Under the conditions tested, the light-off time of the baseline case was 62 seconds, compared with 33 seconds for the UEGI case. The peak temperature is well under the thermal melting condition, and temperature distribution is not so severe as to consider thermal stress. It is noted that the UEGI technology is an effective method to warm up the catalyst with a small amount of thermal stress during the cold start period.

다구찌 방법과 실험계획법을 이용한 소음기의 설계 방법 (Design of Muffler using Taguchi Method and Experimental Design)

  • 오재응;차경준;이규태;진정언
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.121-129
    • /
    • 1999
  • Recently, the regulations from the govemment and the concems of the people give rise to the interest in exhaust noise of passenger car as much as other vehicles. The exact analysis of various mufflers is needed to reduce the level of exhaust noise. In this paper, we propose a design to improve the mufflers capacity by reducing noise of exhaust system combining Taguchi method and fractional factorial design. In order to measure the performance of a muffler, the performance prediction software which is developed by the Dept. of Automotive Engineering at Hanyang University is used. From the current muffler system we select control factors such as lenght and radius of each component that are thought to be effective on capacity of muffler. Factors are arranged using L18, L27 table of orthogonal array and the fractional factorial design for analysis. We find some significant interaction effects using 1/3 fractional factorial design and accomplish the reduction of noise from the muffler.

  • PDF