• Title/Summary/Keyword: Automotive Design

Search Result 3,127, Processing Time 0.03 seconds

Design Optimization of Over-slam Bumper for Moving Part Over-travel (무빙부품의 과다 닫힘 방지를 위한 오버슬램 범퍼 최적설계)

  • Choi, Yeonwook;Ki, Wonyong;Lee, Jonghyun;Heo, Seung-Jin;Rhie, Chulhong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.66-72
    • /
    • 2014
  • A kinematic analysis method has been used as analysis method for dynamic behavior of moving parts of vehicle, especially hood part. Such analysis method, however, has its limitations in terms of design technology, including, over travel of hood that occurs due to lack of considerations of compliance characteristics, such as flexible components of hood's weather strip and over slam bumper. Therefore, it is necessary to develop a modeling which reflects compliance of flexible components of hood and elastic characteristics of panel for improvement of design process. In this thesis, a finite element method as mentioned earlier, is developed to represent over travel of hood. Also optimization process applying sequential approximate optimization is suggested to prevent over travel. The over travel analysis method and optimization process, which are developed through the research, would make it possible to design with high quality and credibility. Furthermore, it is expected that the time for design would be reduced and the design quality also improved.

Strength Design of Driveshafts for Passenger Cars (승용차용 구동축의 강도설계)

  • Jeong, Chang-Hyun;Jung, Do-Hyun;Bae, Won-Rak;Kim, Jin-Yong;Im, Jong-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.114-123
    • /
    • 2007
  • We are going to propose equations for stable static and endurance strength design of driveshafts. It is very important to decide the contact normal stress of internal components of CV joints. We can estimate the strength, torque capacity, endurance life of CV joints from contact normal stress by presented equation in this paper. Besides it can be shown the equation for shaft design.

Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness (수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.

Structural Design of an Automotive Door Using the Kriging Models (크리깅모델을 이용한 자동차 도어의 구조설계)

  • Lee, Kwon-Hee;Bang, Il-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.146-153
    • /
    • 2007
  • Weight reduction for automobile components has been sought to achieve fuel efficiency and energy conservation. There are two approaches in reducing their weights. One is by using material lighter than steel, and the other is by redesigning their structures. The latter has been performed by adopting hydroforming, tailor weled blank, optimization, etc. In this research, the kriging approximation method and simulated annealing algorithm are applied to the design of a front door made by TWB (Tailor Welded Blank) technology. The design variables are set up as the thicknesses of parts and the positions of parting lines. A thickness set considered as a design variable of each part is not arbitrarily determined but selected from standard products, so it is a discrete set. This research presents the discrete and continuous structural optimization method for an automotive door design.

ALUMINUM SPACE FRAME B.I.W. OPTIMIZATION CONSIDERING MULTIDISCIPLINARY DESIGN CONSTRAINTS

  • KIM B. J.;KIM M. S.;HEO S. J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.635-641
    • /
    • 2005
  • This paper presents an ASF (Aluminum Space Frame) BIW (Body in White) optimal design, which minimizes weight and satisfies multidisciplinary constraints such as static stiffness, vibration characteristics, low-/high-speed crash, and occupant safety. As only one cycle CPU time for all the analyses is 12 hours, the ASF design having 11-design variable is a large scaled problem. In this study, ISCD-II and conservative least square fitting method were used for efficient RSM modeling. Likewise, the ALM method was used to solve the approximate optimization problem. The approximate optimum was sequentially added to remodel the RSM. The proposed optimization method uses only 20 analyses to solve the 11-design variable problem. Moreover, the optimal design can achieve $15.6\%$ weight reduction while satisfying all the multidisciplinary design constraints.

QUALITY IMPROVEMENT FOR BRAKE JUDDER USING DESIGN FOR SIX SIGMA WITH RESPONSE SURFACE METHOD AND SIGMA BASED ROBUST DESIGN

  • Kim, H.-S.;Kim, C.-B.;Yim, H.-J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.193-201
    • /
    • 2003
  • The problem of brake judder is typically caused by defects of quality manufacturing. DFSS (Design for six sigma) is a design process for quality improvement. DFSS will result in more improved but less expensive quality products. This paper presents an implementation of DFSS for quality improvement of the brake judder of heavy-duty trucks. Carrying out 5 steps of DFSS, the major reasons for defects of quality are found. The numerical approximation of the brake system is derived by means of the response surface method. Its quality for brake judder is improved by using the sigma based robust design methodology. Results are compared between the conventional deterministic optimal design and the proposed sigma based robust design. The proposed one shows that manufacturing cost may increase as the quality level increase. The proposed one, however, is more economical in aspect of the overall cost since the probability of failure dramatically goes down.

OPTIMAL RELIABILITY DESIGN FOR THIN-WALLED BEAM OF VEHICLE STRUCTURE CONSIDERING VIBRATION

  • Lee, S.B.;Baik, S.;Yim, H.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.135-140
    • /
    • 2003
  • In the deterministic optimization of a structural system, objective function, design constraints and design variables, are treated in a nonstatistical fashion. However, such deterministic engineering optimization tends to promote the structural system with lest reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. Therefore, a balance must be developed between the satisfactions of the design requirements and the objectives of reducing manufacturing cost. This paper proposes the reliability-based design optimization (RBDO) technique, which enables the optimum design that considers confidence level for the vibration characteristics of structural system. Response surface method (RSM) is utilized to approximate the performance functions describing the system characteristics in the RBDO procedure. The proposed optimization technique is applied to the pillar section design considering natural frequencies of a vehicle structure.

Design of BLDC motor using Parametric design (Parametric Design을 이용한 BLDC 전동기의 설계)

  • Kwon, Soon-O;Lee, Seok-Hee;Kim, Sung-Il;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1013-1014
    • /
    • 2007
  • This paper presents the design of Brushless DC (BLDC) motor using parametric design. According to the variation of magnitude of back emf and inductance, characteristic equations of BLDC motor are solved then output power, current, and torque ripples are calculated. Therefore output characteristics of BLDC motor according to motor parameter can be easily understood, and the range of back emf and inductance satisfying required output performance can be easily found. Presented design method leads to the BLDC motor design to be simple and effective, and the optimal design of BLDC motor using parametric design for 3kW with 50000rpm is presented.

  • PDF

Optimal Location Issue on both Supporting Bearing and Unbalance Mass of the Balance Shaft Module in a Inline 4-Cylinder Engine (직렬 4기통 엔진용 밸런스 샤프트 모듈의 불평형 질량 및 베어링 위치 선정)

  • Lee, Dong-Won;Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2010
  • Large quantity of bending deformation as well as irregular rotating torque fluctuation are the main struggles of the balance shaft module during a high speed rotation. Since two issues are much sensitive to the location of both supporting bearing and unbalance mass at a balance shaft, it is recommended to construct a design strategy on balance shaft at the early stage so as to save developing time and effort before approaches to the detailed design process. In this paper, an optimal design formulation is proposed to minimize the elastic strain energy due to bending as well as the kinematic energy of polar moment of inertia in rotation. Case studies of optimal design are conducted for different mass ratio as well as linear combination of objective function and its consequence reveals that global optimum of balance shaft model is existed over possible design conditions. Simulation shows that best locations of both supporting bearing and unbalance are globally 20% and 80%, respectively, over total length of a balance shaft.

Research and development of automotive hydraulic brake hose for domestic production (자동차용 브레이크 호스 국산화 개발연구)

  • 이재순;정건화
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 1984
  • Research and development of automotive hydraulic brake hose has been carried out for domestic production. Four different trial products have been developed according to different design factors, and designated as Lot.. 1 through Lot. 4 respectively. Eleven kinds of static and dynamic performance tests have been conducted on each sample product of Lot. number, and the trial product by the Lot. 2 design factors was found to meet all the test specifications. Therefore, the automotive hydraulic brake hose could be localized in Korea.

  • PDF