• Title/Summary/Keyword: Automotive Components

Search Result 815, Processing Time 0.026 seconds

Mechanical and Electrical Properties of an Al-Fe-Mg-Cu-B System Alloy for Electrical Wire Fabricated by Wire Drawing (인발가공에 의해 제조된 전선용 Al-Fe-Mg-Cu-B계 합금의 기계적 및 전기적 특성)

  • Jung, Chang-Gi;Hiroshi, Utsunomiya;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.597-602
    • /
    • 2017
  • In this study, an Al-0.7wt%Fe-0.2wt%Mg-0.2wt%Cu-0.02wt%B alloy was designed to fabricate an aluminum alloy for electrical wire having both high strength and high conductivity. The designed Al alloy was processed by casting, extrusion and drawing processes. Especially, the drawing process was done by severe deformation of a rod with an initial diameter of 12 mm into a wire of 2 mm diameter; process was equivalent to an effective strain of 3.58, and the total reduction in area was 97 %. The drawn Al alloy wire was then annealed at various temperatures of 200 to $400^{\circ}C$ for 30 minutes. The mechanical properties, microstructural changes and electrical properties of the annealed specimens were investigated. As the annealing temperature increased, the tensile strength decreased and the elongation increased. Recovery or/and recrystallization occurred as annealing temperature increased, and complete recrystallization occurred at annealing temperatures over $300^{\circ}C$. Electric conductivity increased with increasing temperature up to $250^{\circ}C$, but no significant change was observed above $300^{\circ}C$. It is concluded that, from the viewpoint of the mechanical and electrical properties, the specimen annealed at $350^{\circ}C$ is the most suitable for the wire drawn Al alloy electrical wire.

A Study on the Weldability and Mechanical Characteristics of Dissimilar Materials Butt Joints by Laser Assisted Friction Stir Welding (Laser-FSW Hybrid 접합기술을 적용한 이종재료(Al6061-T6/SS400) 접합부의 접합성 및 기계적 특성에 관한 연구)

  • Bang, Han-Sur;Bang, Hee-Seon;Kim, Hyun-Su;Kim, Jun-Hyung;Oh, Ik-Hyun;Ro, Chan-Seung
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.70-75
    • /
    • 2010
  • This study intends to investigate the weldability and mechanical characteristics of butt weld joints by LAFSW for dissimilar materials (Al6061-T6 and SS400). At optimum welding conditions, the tensile strength of dissimilar materials joints made by FSW is found to be lower than that of LAFSW. Due to the increase in plastic flow and formation of finer recrystallized grains at the TMAZ and SZ by laser preheating in LAFSW, the hardness in LAFSW appeared to be higher than that of FSW. Compared with FSW, finer grain size is observed and elongated grains in parent metal are deformed in the same direction around the nugget zone in TMAZ of Al6061-T6 by LAFSW. Whereas, at weld nugget zone, coarse grain size is appeared in LAFSW compared to FSW, which is owing to more plastic flow due to laser preheating effect. In dissimilar materials joints by LAFSW, ductile mode of fracture is found to occur at Al6061 side with fewer brittle particles. Mixed mode of cleavage area and ductile fracture is observed at SS400 side.

3-D Hetero-Integration Technologies for Multifunctional Convergence Systems

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2015
  • Since CMOS device scaling has stalled, three-dimensional (3-D) integration allows extending Moore's law to ever high density, higher functionality, higher performance, and more diversed materials and devices to be integrated with lower cost. 3-D integration has many benefits such as increased multi-functionality, increased performance, increased data bandwidth, reduced power, small form factor, reduced packaging volume, because it vertically stacks multiple materials, technologies, and functional components such as processor, memory, sensors, logic, analog, and power ICs into one stacked chip. Anticipated applications start with memory, handheld devices, and high-performance computers and especially extend to multifunctional convengence systems such as cloud networking for internet of things, exascale computing for big data server, electrical vehicle system for future automotive, radioactivity safety system, energy harvesting system and, wireless implantable medical system by flexible heterogeneous integrations involving CMOS, MEMS, sensors and photonic circuits. However, heterogeneous integration of different functional devices has many technical challenges owing to various types of size, thickness, and substrate of different functional devices, because they were fabricated by different technologies. This paper describes new 3-D heterogeneous integration technologies of chip self-assembling stacking and 3-D heterogeneous opto-electronics integration, backside TSV fabrication developed by Tohoku University for multifunctional convergence systems. The paper introduce a high speed sensing, highly parallel processing image sensor system comprising a 3-D stacked image sensor with extremely fast signal sensing and processing speed and a 3-D stacked microprocessor with a self-test and self-repair function for autonomous driving assist fabricated by 3-D heterogeneous integration technologies.

Car Driver Drowsiness Detection Technology (자동차 운전자 졸림 감지 기술)

  • Chung, Wan-Young;Kim, Jong-Jin;Kwon, Tae-Ha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.481-484
    • /
    • 2011
  • Recent Automotive technology is driven from mechanical device to the electronic components which improve the vehicle's safety and convenience. The future competitiveness of the car will come from safety issues and energy efficiency, convenience and the application of the technologies. In this study, various techniques for driver drowsiness detection are introduced and compared with each others. The advantages and disadvantages of commercially available technologies and developed technologies are compared. To enhance the detection resolution, multiple sensing technologies are introduced in this paper. The feasibility of two drowsiness detection methods, that is, existing camera image recognition method and bio signal analysis method, are tested. The direct drowsiness detection by the camera image of eyes and driver's vital signs detected indirectly are combined and analyzed by the developed noble algorithm for stress, fatigue, drowsiness detection with a more accurate high-drowsiness detection.

  • PDF

Collision Avoidance Using Omni Vision SLAM Based on Fisheye Image (어안 이미지 기반의 전방향 영상 SLAM을 이용한 충돌 회피)

  • Choi, Yun Won;Choi, Jeong Won;Im, Sung Gyu;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.210-216
    • /
    • 2016
  • This paper presents a novel collision avoidance technique for mobile robots based on omni-directional vision simultaneous localization and mapping (SLAM). This method estimates the avoidance path and speed of a robot from the location of an obstacle, which can be detected using the Lucas-Kanade Optical Flow in images obtained through fish-eye cameras mounted on the robots. The conventional methods suggest avoidance paths by constructing an arbitrary force field around the obstacle found in the complete map obtained through the SLAM. Robots can also avoid obstacles by using the speed command based on the robot modeling and curved movement path of the robot. The recent research has been improved by optimizing the algorithm for the actual robot. However, research related to a robot using omni-directional vision SLAM to acquire around information at once has been comparatively less studied. The robot with the proposed algorithm avoids obstacles according to the estimated avoidance path based on the map obtained through an omni-directional vision SLAM using a fisheye image, and returns to the original path. In particular, it avoids the obstacles with various speed and direction using acceleration components based on motion information obtained by analyzing around the obstacles. The experimental results confirm the reliability of an avoidance algorithm through comparison between position obtained by the proposed algorithm and the real position collected while avoiding the obstacles.

Exhaust Emission Characteristics by Alteration of MTBE Contents in D. I. Diesel Engine (직접분사식 디젤기관에서 MTBE 함유율 변화에 의한 배출가스 특성)

  • O, Yeong-Taek;Choe, Seung-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.724-732
    • /
    • 2002
  • Although the demands for diesel engine is increased, our world is faced with very serious problems related to the air pollution due to the exhaust emissions of the diesel engine. In this study, the potential possibility of oxygenated fuel such as Methyl tertiary butyl ether (MTBE) was investigated for the sake of exhausted smoke reduction from diesel engine. MTBE has been used as a fuel additive blended into unleaded gasoline to improve octane number, but the study of application for diesel engine was incomplete. Because MTBE includes oxygen content approximately 18%, it is a kind of oxygenated fuel that the smoke emission of MTBE is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at high load and speed in diesel engine. But, the NOx emission of MTBE blended fuel is increased compared with commercial diesel fuel. And. it was tried to analyze not only total hydrocarbon but individual hydrocarbon components from $C_1$to $C_{6}$ in exhaust gas using gas chromatography to seek the reason for remarkable reduction of smoke emission. The results of this study show three conclusions. 1. The smoke omission of the MTBE blended fuel is lower than that of the diesel fuel at all experimental region in direct injection diesel engine. 2. Individual hydrocarbons(C$_1$~ $C_{6}$) as well as total hydrocarbon of oxygenated fuel are reduced remarkably compared with diesel fuel. 3. Smoke emission from diesel engines was strongly depended on oxygen content in fuel regardless of operating condition.

An Effective Design Method of Stamping Process by Feasible Formability Diagram (가용 성형한계영역을 이용한 스템핑 공정의 효율적 설계방법)

  • Cha, Seung-Hoon;Lee, Chan-Joo;Lee, Sang-Kon;Kim, Bong-Hwan;Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.108-115
    • /
    • 2009
  • In metal forming technologies, the stamping process is one of the significant manufacturing processes to produce sheet metal components. It is important to design stamping process which can produce sound products without defect such as fracture and wrinkle. The objective of this study is to propose the feasible formability diagram which denotes the safe region without fracture and wrinkle for effective design of stamping process. To determine the feasible formability diagram, FE-analyses were firstly performed for the combinations of process parameters and then the characteristic values for fracture and wrinkle were estimated from the results of FE-analyses based on forming limit diagram. The characteristic values were extended through training of the artificial neural network. The feasible formability diagram was finally determined for various combinations of process parameters. The stamping process of turret suspension to support suspension module was taken as an example to verify the effectiveness of feasible formability diagram. The results of FE-analyses for process conditions within fracture and wrinkle as well as safe regions were in good agreement with experimental ones.

Effects of Variation in Process Parameters on Cavity Pressure and Mechanical Strength of Molded Parts in LSR Injection Molding (LSR 사출성형의 공정조건 변화가 캐비티 압력 및 성형품의 기계적 강도에 미치는 영향)

  • Park, Hyung Pil;Cha, Baeg Soon;Lee, Jeong Won;Ko, Young Bae;Kim, Sang Gweon;Jung, Tae Sung;Kim, Dong Han;Rhee, Byung Ohk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.206-212
    • /
    • 2014
  • Liquid silicone rubber (LSR) has been widely used in automotive, electrical, and medical components. Thus, research on the use of LSR in the injection molding process is required to obtain high-quality and high-performance products. In this study, a mold was fabricated to examine the effects of the process parameters on the molding and mechanical properties of LSR parts. A computer-aided engineering analysis was used to optimize the air vent depth and curing temperature to decrease the flash at the air vents caused by the low viscosity of LSR. Temperature and pressure sensors were mounted in the mold to determine the effects of the process parameters on the temperature and pressure in the cavity. The tensile strength of the LSR parts was also examined in relation to the process parameters.

A Study of Machine Learning based Hardware Trojans Detection Mechanisms for FPGAs (FPGA의 Hardware Trojan 대응을 위한 기계학습 기반 탐지 기술 연구)

  • Jang, Jaedong;Cho, Mingi;Seo, Yezee;Jeong, Seyeon;Kwon, Taekyoung
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.109-119
    • /
    • 2020
  • The FPGAs are semiconductors that can be redesigned after initial fabrication. It is used in various embedded systems such as signal processing, automotive industry, defense and military systems. However, as the complexity of hardware design increases and the design and manufacturing process globalizes, there is a growing concern about hardware trojan inserted into hardware. Many detection methods have been proposed to mitigate this threat. However, existing methods are mostly targeted at IC chips, therefore it is difficult to apply to FPGAs that have different components from IC chips, and there are few detection studies targeting FPGA chips. In this paper, we propose a method to detect hardware trojan by learning the static features of hardware trojan in LUT-level netlist of FPGA using machine learning.

Application for Uni-materialization and Life Cycle Assessment of the Vehicle Undercover (자동차 언더커버의 유니소재화 적용 및 전과정평가)

  • Yun, Hyeri;Park, Yoosung;Yu, MiJin;Bae, Hana;Lee, Hanwoong
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.256-269
    • /
    • 2017
  • In response to national and international regulations for resource circulation and to reduce greenhouse gas emissions, the automotive industry has tried to reuse scrap parts and defective products produced in the disposal or production stages as recycled resources. Attempts have been made to reach the target recycling rate by reducing the number of material types required for each part. Moreover, in order to achieve greenhouse gas reduction targets while maintaining the performance of existing products, lighter components are being developed. Existing products were 100% incinerated at the disposal stage, but the uni-materialized products were improved to be possible that it could be recycled 90% through scraps and the defective product in the pre-production and production stage. It also appears that the fuel efficiency improves through 56% lightweight compared to the existing product. In this paper, a preliminary assessment is conducted on the applicability of uni-materialized product development of car parts. The environmental impact values of existing products and developed prototypes are compared and analyzed through life cycle assessment.