• Title/Summary/Keyword: Automotive Body Panel

Search Result 57, Processing Time 0.025 seconds

Changes in Microstructure and Texture during Annealing of 0.015% C-1.5% Mn-0~0.5% Mo Steels (0.015% C-1.5% Mn-0~0.5% Mo 강의 어닐링과정에서 미세조직과 집합조직의 변화)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.251-261
    • /
    • 2011
  • The changes in microstructure and texture during annealing were examined in a series of 0.015% C-1.5% Mn cold-rolled sheet steels with 0~0.5% Mo. Orientation distribution function data were calculated from the (110), (200), (211) pole figures determined on the rolled plane of cold-rolled and annealed steel sheets. Regardless of Mo content and annealing conditions, martensite volume fraction was less than 1.0%, not affecting the texture evolution. Textural change at the cooling stage after heating at $820^{\circ}C$ for 67 sec was not observed. Increasing the Mo content and annealing temperature markedly strengthened the intensities of ${\gamma}$-fiber texture, resulting in the increase in $r_m$ value. The desirable texture evolution for deep drawability in the 0.5% Mo steel may be mainly caused by the grain refining effect of Mo carbide in the hot-rolled steel sheet.

Impact Tensile Properties and Intergranular Fracture Behavior with Strain Rate Variations of Al-M g-X (X = Cr,Si) Alloy

  • Chang-Suk Han;Min-Gyu Chun;Sung-Soon Park;Seung-In Lim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.330-340
    • /
    • 2024
  • Al-Mg-Si alloys are light weight and have excellent corrosion resistance, and are attracting attention as a liner material for high-pressure hydrogen containers in hydrogen fuel cell vehicles. Because it has excellent plastic hardening properties, it is also applied to car body panel materials, but it is moderate in strength, so research to improve the strength by adding Si-rich or Cu is in progress. So far, the authors have conducted research on the intergranular fracture of alloys with excessive Si addition from the macroscopic mechanical point of view, such as specimen shape. To evaluate their impact tensile properties, the split-Hopkinson bar impact test was performed using thin plate specimens of coarse and fine grain alloys of Al-Mg-X (X = Cr,Si) alloy. The effect of the shape of the specimen on the characteristics was studied through finite element method (FEM) analysis. As a result, it was found that the intergranular fracture of the alloy with excessive Si depended on the specimen width (W)/grain size (d), which can be expressed by the specimen size and grain size. As W/d decreases, the intergranular fracture transforms into a transgranular fracture. As the strain rate increases, the fracture elongation decreases, and the fracture surface of the intergranular fracture becomes more brittle. It was confirmed that intergranular fracture occurred in the high strain rate region even in materials with small grain sizes.

A Study of auto-body panel correction of forming analysis that use One-step Forming method (One-step Forming 방법을 이용한 차체 판넬 성형해석에 관한 연구)

  • Jung Dong Won;Hwang Jae Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.89-97
    • /
    • 2005
  • Thin plate correction of forming process that it is nowadays smile change of simple contact surface as it becomes possible that forecast dictionary numerically exactly to analyze comparative big comp displacement real industry spot problems between complicated and abnormal curved line shapes and thin plate and die more reliable and need many efforts yet economical analysis method is required and develops this efficient algorithm. This research analyzes correction of forming and examined possibility and validity of spot application using One-Step Finite Element Method. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

A study on measurement and compensation of automobile door gap using optical triangulation algorithm (광 삼각법 측정 알고리즘을 이용한 자동차 도어 간격 측정 및 보정에 관한 연구)

  • Kang, Dong-Sung;Lee, Jeong-woo;Ko, Kang-Ho;Kim, Tae-Min;Park, Kyu-Bag;Park, Jung Rae;Kim, Ji-Hun;Choi, Doo-Sun;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • In general, auto parts production assembly line is assembled and produced by automatic mounting by an automated robot. In such a production site, quality problems such as misalignment of parts (doors, trunks, roofs, etc.) to be assembled with the vehicle body or collision between assembly robots and components are often caused. In order to solve such a problem, the quality of parts is manually inspected by using mechanical jig devices outside the automated production line. Automotive inspection technology is the most commonly used field of vision, which includes surface inspection such as mounting hole spacing and defect detection, body panel dents and bends. It is used for guiding, providing location information to the robot controller to adjust the robot's path to improve process productivity and manufacturing flexibility. The most difficult weighing and measuring technology is to calibrate the surface analysis and position and characteristics between parts by storing images of the part to be measured that enters the camera's field of view mounted on the side or top of the part. The problem of the machine vision device applied to the automobile production line is that the lighting conditions inside the factory are severely changed due to various weather changes such as morning-evening, rainy days and sunny days through the exterior window of the assembly production plant. In addition, since the material of the vehicle body parts is a steel sheet, the reflection of light is very severe, which causes a problem in that the quality of the captured image is greatly changed even with a small light change. In this study, the distance between the car body and the door part and the door are acquired by the measuring device combining the laser slit light source and the LED pattern light source. The result is transferred to the joint robot for assembling parts at the optimum position between parts, and the assembly is done at the optimal position by changing the angle and step.

The Development of Tool Position Tracking system Based on UWB for Automotive Assembly Process (자동차 조립공정 작업의 실시간 모니터링을 위한 UWB 기반 공구위치 추적 시스템 개발)

  • Jeong, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.657-661
    • /
    • 2019
  • The automobile industry is representative industry of complex characteristics, which employing 10 million people, the largest manufacturing industry over $1 trillion in sales and assembling with 20,000 parts to make complete automobile and automobile assembly processes have a lower automation rate than other processes, which is labor intensive processes of assembling to painted body with 3,000 components such as seats, built-in, instrument panel, glass, engine, transmission units. However, the current assembly process does not have real-time monitoring. If a tool position tracking system is adapted to assembly process for directing consistent work order and checking for missing work, the productivity and quality improvement of the assembly process can be achieved by preemptively preventing possible defects in the assembly process. So, this paper aims to develop a Tool Position tracking system using UWB(Ultra Wide Band) with trilateration and proves their effectiveness for real-time monitoring of automotive assembly process.

A Study for Stamping of Patchwork with Resistance Spot Weld (저항 점용접에 의한 실러 패치워크 적용 판재 프레스 성형 연구)

  • Lee, Gyeong-Min;Jung, Chan-Yeong;Song, Il-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.25-31
    • /
    • 2018
  • Recently, research on the development of lightweight vehicle bodies is increasing continuously as a response to fuel economy regulations. To reduce the weight of a vehicle body, a conventional steel plate has been substituted by light weight material with high specific strength and the jointing of multi-materials is generally applied. On the other hand, the customer's demand for safety and emotional quality in NVH (Noise, Vibration and Harshness) is becoming increasingly important. Therefore, a light weight with proper strength and NVH quality is needed. In the view of light weighting and NVH quality, the application of a vibration proof steel plate can be an effective solution but the formability of a sandwich panel is different with a conventional steel sheet. Therefore, careful analysis of formability is required. This study aims to characterize the formability of a sandwich high-strength steel plate. The high-strength steel plates of different thicknesses with resistance spot welding and sealer bonding were analyzed using forming limits diagram through a cup drawing test.

Study of Examples for Air Bag Non-deployment Including Rear Collision and Failure Phenomenon by Damage of Control Parts in Vehicle Air Bag (자동차 에어백의 제어부품 불량에 의한 고장현상 및 후방 추돌에 관련된 에어백 미전개에 대한 사례 연구)

  • Lee, Il Kwon;Kim, Young Gyu;Moon, Hak Hook
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.102-106
    • /
    • 2012
  • The purpose of this paper is to study the failure cases in relation to system of Air Bag in vehicle happened in the field. In the first example, it was separated the soldering parts connected the wire pin between air bag module and clock spring of air bag. Whenever the pin shake by the car's vibration, the driver verified the malfunction phenomenon appeared air bag warning lamp on instrument panel in front of driver's seat. in car inside room. The second example, it verified the warning lamp lighting phenomenon of air bag by produced the circuit plate non-contacting of single an element in air bag electronic control unit. The third example, it verified the light of air bag warning indicator lamp by separated with soldering parts connecting inner pin and resistance terminal of seat belt pretensioner using passenger seat. The fourth example, when the passenger car crash a back of truck, the former bumper get jammed under the latter as the roof height of car low less than that. Therefore, the impact of Car's collision verified that don't transfer with body frame of vehicle because of no attachment impact sensor in it.