• Title/Summary/Keyword: Automotive Air Conditioning

Search Result 378, Processing Time 0.022 seconds

An Experimental Study on the Performance of Automobile Air Conditioning System with Variations of Charging Conditions (냉매충전량 변화에 따른 자동차에어컨 성능의 실험적 고찰)

  • 이건호;정종대;최규환;유정열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.203-211
    • /
    • 1998
  • The system performance of an automobile air conditioning system with variations of charging conditions has been investigated experimentally. An automobile air conditioning system was composed of laminated type evaporator, parallel flow type condenser, swash plate type com-pressor, externally equalized thermostatic expansion valve and receiver drier. The objective of this study was to quantify the influence of the refrigerant charge under the steady state operation of an automobile air conditioning system. The results indicated that a 10% undercharge caused a 10% reduction in the capacity of evaporator.

  • PDF

A Study on the Refrigerant Characteristics of the HFC-l52a, and Azeotrope Mixed with $CF_3$I in Air Conditioners (에어컨용 냉매 HFC-152a와 HFC-152a에 $CF_3$I를 혼합한 공비혼합냉매 특성에 관한 연구)

  • 이종인;하옥남;홍경한;권일욱;박찬수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.332-340
    • /
    • 2002
  • In these days, environmental concerns have been increased throughout the industry and community worldwide. To prevent the ozone depletion, ozone depletion potential of a refrigerant must be zero. Simultaneously, a refrigerant with low GWP (global warming potential) is very demanding to induce green house effect. Chlorine-free HFC-l34a is a refrigerant widely used for automotive air-conditioning system because its destruction potential is ecologically zero. Although HFC-l34a has no ozone depletion potential, its global warming potential is so high that it is not considered as a perfect alternative refrigerant that is acceptable for long-term use. In this paper, experimental measurement has been carried out to analyze the performance characteristics of automotive air-conditioning system using HFC-152a, which has low GWP and zero ODP. Also mixed refrigerant that is composed of HFC-152a and $CF_3$ was applied to investigate an alternative possibility for the automotive airconditioning system. As a result of this study, we could draw following conclusions; With respect to the variation of the rotational speed of compressor, outside air temperature and flow rate, the heat amount of evaporator and compressor and performance coefficient was varied.

Performance Evaluation of a Variable Frequency Heat Pump Air Conditioning System for Electric Bus

  • Peng, Qinghong;Du, Qungui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • This study presents a simulation model of a heat pump air conditioning system with a variable capacity compressor and variable speeds fans for electric bus. An experimental sample has been developed in order to check results from the model. Effects on system performance of such working conditions as compressor speed, evaporator fans speeds and the condenser fans speeds have been simulated by means of developed model. The results show that the three speeds can be adjusted simultaneously according to actual working condition so that the AC system can operate under the optimum state which the control objects want to achieve. It would be a good and simple solution to extend the driving ranges of EVs because of the highest efficiency and the lowest energy consumption of AC system.

Experimental Studies on the Stack Cooling Performance Using a $CO_2$ Air Conditioning System in Fuel Cell Vehicles (이산화탄소 에어컨 시스템을 이용한 연료전지 자동차의 스택 냉각성능에 대한 실험적 연구)

  • Kim, Sung-Chul;Kim, Min-Soo;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.87-93
    • /
    • 2008
  • The $CO_2$ air conditioning system installed in fuel cell vehicles could be used either for stack cooling or for cabin cooling, and thus was used for the stack cooling when additional stack heat release was required over a fixed radiator capacity for high power generation. This study investigated the performance of the stack cooling system using $CO_2$ air conditioner at various operating conditions. Also, the heat releasing effectiveness and mutual interference were analyzed for the stack cooling system using an air conditioner and compared with the conventional radiator cooling system with/without cabin cooling. The heat release of the stack cooling system with the aid of $CO_2$ air conditioner increased up to 36% more than that of the conventional radiator cooling system with cabin cooling. Furthermore, the heat release of the stack cooling system using $CO_2$ air conditioner increased more by 7% than that of the conventional radiator cooling system without cabin cooling.

A Study on the Vibration Transmission Property of Automotive Air Conditioning Assembly by Frequency Response Analysis (주파수 응답해석을 이용한 자동차용 에어컨 라인 어셈블리의 진동전달 특성에 관한 연구)

  • Han, Seong-Ryeol;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.48-53
    • /
    • 2013
  • An automotive air conditioning assembly consists of a condenser, a compressor and an evaporator. These major components are connected with rubber hoses and aluminum pipes. Once mounted on the automotive air conditioning assembly, it is exposed to a serious vibration environment for a long time. In some cases, there are vibration cracking on the assembly. In order to solve this vibration problem, several real vibration tests are performed on the assembly of which the lay-out was optimized, in spite of sample production cost and making time. In this study, a frequency response analysis, which is a kind of finite element method of the vibration, was performed to know the characteristic of the vibration transmission on the assembly lay-out. The analysis result indicated the damping performance, which is satisfied with the vibration standard of car maker, in rubber hoses and the whole assembly.

Effect of Air Conditioning System on Vehicle Fuel Economy in a Passenger Car (Air Conditioning System이 차량 모드 주행 연비에 미치는 영향 연구)

  • Kim, Dae-Kwang;Cho, Geun-Jin;Park, Jin-Il;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2007
  • Fuel efficiency is one of the major issues in regard to energy and environment. As customers desire more comfortable vehicles, increase of accessory traction force is necessary. Air conditioning system (ACS) consumes the biggest traction force among accessories, especially during summer. This means ACS is the primary object deteriorating fuel economy among accessories. Since direct measurement of traction force and fuel consumption in practical vehicle is difficult, comparison analysis is taken between vehicle with and without ACS working. For this comparison, real time measurements are carried out to know ACS traction force and fuel consumption. As a result of the comparison, a vehicle without ACS operation was 15.92% superior to a vehicle with ACS operating. It could be used as a fundamental material for improvement ACS for better fuel efficiency.

A Study on Characteristics of HFC-l34a and OS-l2a Refrigerant in Automobile Air-Conditioning System (자동차 에어컨용 냉매인 HFC-134a와 OS-12a의 성능 특성에 관한 연구)

  • 이종인;하옥남
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.136-142
    • /
    • 2002
  • HFC-134a is currently used as the refrigerant in automobile air-conditioner, replacing the ozone depleting refrigerant CFC-12. Although HFC-l34a has no ozone depletion potential, it has a relatively high global warming potential, approximately 1300 tins that of CO$_2$ over a 100 year time horizon. Therefore, HFC- l34a does not seem to be a perfect alternative refrigerant due to high GWP. For this reason, non-azeotrope refrigerant mixture have been proposed as a long-term and drop-in alternative to HFC-l34a in the automobile air-conditioning system which has variable operating conditions with changes in RPM and pressure ratio. In this study,OS-l2a of which thermodynamic properties are similar to those of HFC-l34a is selected among the mixed refrigerant. HFC-l34a and OS-l2a are examined experimently by the performance test in the same automobile air-conditioning system.

Finite Element Analysis for the Swaging Process of an Automotive Air-conditioning Hose Assembly (자동차용 에어컨 호스 조립품의 스웨이징 공정에 대한 유한요소해석)

  • Baek, J.K.;Kim, B.T.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.54-60
    • /
    • 2010
  • The automotive air conditioning hose is used for connecting the components of air conditioner in a vehicle. The hose is usually manufactured by the swaging process to connect the rubber hose with the metal fitting at the end of the hose. The swaging process leads to various stress and strain configurations in the hose, which give a critical effect on the hose performance. In this paper, the deformation characteristics of an air-conditioning hose during the swaging process were analyzed using the nonlinear finite element method. Especially the rubber layers, which are contacted with the metal fittings, were divided with finer mesh density than the reinforcement braids to increase the solution accuracy. The material properties were obtained from experimental data, and the contact conditions were used in consideration of the real manufacturing process.