• Title/Summary/Keyword: Automobile part

Search Result 515, Processing Time 0.03 seconds

Numerical Evaluation of Hemming Defects Found on Automotive Door Panels (유한요소해석에 의한 자동차 도어패널의 헤밍 결함 평가)

  • Seo, O.S;Jeon, K.Y;Rhie, C.H;Kim, H.Y
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.280-286
    • /
    • 2015
  • Hemming is used to connect two sheet metal components by folding the edge of an outer panel around an inner panel to create a smooth edge. The minimization of hemming defects is critical to the final quality of automobile products because hemming is one of the last operations during fabrication. Designing the hemmed part is not easy and is influenced by the geometry of the bent part. Therefore, the main problem for automotive parts is dimensional accuracy since formed products often deviate geometrically due to large springback. Few numerical approaches using 3-dimensional finite element model have been applied to hemming due to the small element size which is needed to properly capture the bending behavior of the sheet around small die corner and the comparatively big size of automotive opening parts, such as doors, hoods and deck lids. The current study concentrates on the 3-dimensional numerical simulation of hemming for an automotive door. The relationship between the design parameters of the hemming operation and the height difference defect is shown. Quality improvement of the automotive door can be increased through the study of model parameters.

Passive Control of the Vortex Shedding past a Square Cylinder with Moving Ground Part II Study of Passive Control Technique (지면 운동에 따른 정사각주 후류의 와류 유동장 수치 해석 Part II. 수동 제어 기법 연구)

  • Kim, Tae-Yoon;Lee, Bo-Sung;Lee, Dong-Ho;Kohama, Y.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.8-14
    • /
    • 2005
  • Understanding of the flow past a bluff body close to a moving ground is very important in automobile and aeronautical fields because of aerodynamic characteristic and instability induced by unsteady vortex shedding. The passive control method that mounted the vertical and horizontal plates at the lower surface of the cylinder is studied to suppress the unsteady oscillation motion. When the grounds moves, the diminish of the shear layer on the ground promotes the interaction between the lower and the upper separated shear layers of the cylinder, hence vortex shedding occurs at the lower gap height than the stationary ground.

Influences of Casting Conditions and Constituent Materials on the Production of Duo-castings (이중복합 주조체의 제조에 미치는 구성 재질과 주조 조건의 영향)

  • Jung, Jae-Young
    • Journal of Korea Foundry Society
    • /
    • v.38 no.1
    • /
    • pp.16-26
    • /
    • 2018
  • In this study, the effects of the pouring temperature, preheating temperature, surface condition and fraction of the wear resistant part on the production of duo-castings were investigated using a high Cr white cast iron with excellent abrasion resistance and a low Cr alloy steel with good toughness. The constituent materials of the duo-castings were designed to have high hardness, fracture toughness and abrasive wear resistance for the replacement of high Mn alloy steels with low abrasive wear resistance. In particular, the amount of abrasive wear of 17% Cr white cast iron was about 1/20 of that of high Mn alloy steel. There was an intermediate area of about 3mm due to local melting at the bonding interface of the duo-castings. These intermediate regions were different from those of the constituent materials in chemical composition and microstructure. This region led to fracture within the wear resistant part rather than at the bonding interface in the bending strength test. The bending fracture strengths were 516-824 MPa, which were equivalent to the bending proof strength of high Mn steel. The effects of various casting conditions on the duo-cast behavior were studied by simple pouring of low Cr alloy steel melt, but the results proved practically impossible to manufacture duo-castings with a sound bonding interface. However, the external heating method was suitable for the production of duo-castings with a sound bonding interface.

Degradation Behavior and Micro-Hardness Analysis of a Coolant Rubber Hose for Automotive Radiator (자동차용 냉각기 고무호스의 노화거동과 미소경도분석)

  • Kwak, Seung-Bum;Shin, Sei-Moon;Shin, Wae-Gi;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.915-923
    • /
    • 2007
  • Rubber hoses for automobile radiators are apt to be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. The aging behaviors of the skin part of the hoses due to thermo-oxidative and electro-chemical stresses were experimentally analyzed. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain as the aging time and temperature increased. On account of the penetration of coolant liquid into the skin part influenced by the electro-chemical degradation(ECD) test the weight of the rubber hose increased, whereas their failure strain and IRHD hardness decreased. The hardness of the hose in the side of the negative pole was the most deteriorated at the test site of the hose skin just below the coolant surface.

Lifetime Assessment Criteria and Failure Analysis for the Clutch Coil in an Automotive Air Conditioner (자동차용 에어컨 클러치 코일의 수명평가 기준과 고장해석)

  • Choi, Man-Yeop;Wei, Shin-Hwan;Kim, Jung-Sik;Jeong, Hai-Sung
    • Journal of Applied Reliability
    • /
    • v.11 no.2
    • /
    • pp.111-126
    • /
    • 2011
  • The clutch coil mounted on the automotive air conditioner is an important part which actuates the clutch to connect or disconnect the pulley and the compressor according to the climate control condition in an automobile. Here, it is generally required that the clutch coil should ensure the long term durability requirement, such as a warranty for the 10 years of field operation or 160,000 km driving, especially in a brand new item, and so forth. However, some difficulties have arisen in restoring its credibility, since domestic specifications for the part have not been yet unified. In order to ensure the reliability, test methods and assessment criteria should be standardized. Moreover, assessed lifetime under specific conditions and potential failure analysis would be important. In this study, lifetime test specifications for the clutch coil have been reviewed and methodological suggestions are provided to ensure reliability, utilizing a quality function deployment through the potential failure mode effect analysis.

Progressive Process Design for Delta Sash in Vehicles (차량용 델타샤시의 프로그레시브 공정 설계)

  • Ko, Young Jun;Kwak, Hyo Seo;Bae, Jun Ho;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1161-1170
    • /
    • 2014
  • Delta sash is an important part of automobile door, which has the functions of supporting and guiding seesaw of car's window, preventing dust and air from outside. In previous manufacturing process, each part of the delta sash was independently formed by tandem processes, and rubber is bonded to steel by poisonous glue. So, the previous processes, including roll forming process and toxic gases, had low production rate and high failure rate. In this study, progressive process design of the delta sash was proposed in order to increase productivity and high utilization of the materials. And instead of the poisonous glue used for adhesion of rubber in the previous tandem process, embossing and piercing processes were designed in the new guide to help the rubber to adhere well to steel. And the optimal piercing distance was designed to ensure structural safety, and prototypes were manufactured for verifying reliability of the processes.

Thermal Deformation Simulation of Boron Steel Square Sheet in Fluid Cooling Process (사각판재 보론강을 사용한 유체냉각공정에서의 열변형 해석)

  • Suh, C.H.;Kwon, T.H.;Jeon, H.W.;Oh, S.K.;Park, C.D.;Choi, H.Y.;Moon, W.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.5-10
    • /
    • 2017
  • Fluid cooling is one of the manufacturing processes used to control mechanical properties, and is recently used for hot stamping of automobile parts. The formed part at room temperature is heated and then cooled rapidly using various fluids in order to obtain better mechanical properties. The formed part may undergo excessive thermal deformation during rapid cooling. In order to predict the thermal deformation during fluid cooling, a coupled simulation of different fields is needed. In this study, cooling simulation of boron steel square sheet was performed. Material properties for the simulation were calculated from JMatPro, and three convection heat transfer coefficients such as water, oil and air were obtained from the experiments. It was found that the thermal deformation increased when the difference of cooling rate of sheet face increased, and the thermal deformation increased when the thickness of sheet decreased.

Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 1st Report : on the Mechanical Properties and Microstructure (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 - 제1보 : 기계적 특성 및 조직)

  • Ahn, Seok-Hwan;Jeong, Jeong-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.64-71
    • /
    • 2005
  • The welding methods have been applied to the most structural products used in the automobile, ship construction, and construction. The structure steel must have sufficient strength of structure; However, the mechanical properties of the welded part changes when it is welded. Therefore, the stability or life of the structure may be affected by the changed mechanical properties. The mechanical properties of the welded part must be examined in order to ensure the safety of structure. In this research, the SS400 steel and the STS304 steel were used to estimate the mechanical properties of the HAZ by weld thermal cycle simulation. In this study, the materials were used to examine the weld thermal cycle simulation characteristic, under two conditions: the drawing with diameter of $\Phi$10 and the residual stress removal treatment. To examine the mechanical properties by the weld thermal cycle simulation, the tensile test was carried out in room temperature. The crosshead speed was lmm/min.

A Study of Surface Improvement for Automotive Part by Injection Mold of Electronic Heating (전류가열 사출금형에 의한 자동차 부품의 표면개선에 관한 연구)

  • Choi, Dong-Hyuk;Hwang, Hyun-Tae;Son, Dong-Il;Kim, Daeil
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • The light-weight of the research and development materials is actively carried out by overseas automobile companies and technology development continues in Korea. For the sake of fuel efficiency, the development of lightweight technology by improving the manufacturing method has been very effective. Recently, to maximize the effects of light weight, automotive interior parts have been applied by the micro-cellular injection molding using supercritical fluids and we call the Mucell manufacturing. This technique causes a problem in the quality of the surface of the products, because the shooting cells are revealed as the surface layer of the products by forming micro cells at the center of the products during injection molding. To overcome these phenomenon, we increased the temperature of injection molding using joule heating until critical value. In this study, we have predicted the problem of Mucell injection molding through the finite element analysis as changed the temperature by joule heating. From the result of finite element analysis, we have determined the optimized process and made the injection mold included electric current heating system with Mucell manufacturing analyzed the surface characteristics of the injection product according to changing mold temperature.

A Study on Managing the Construction Process of Railway Safety Test Facilities Using the Systems Engineering Tool (전산지원도구를 이용한 철도안전 성능평가 시험설비 구축 사업 관리방안 연구)

  • Kim, Yun-Mi;Choi, Kyoung-Jin;Cho, Youn-Ok
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1505-1510
    • /
    • 2008
  • A railway is a complex system integrated with a lot of technical elements such as trains, track facilities, human factors, operation & control and maintenance. As a mass transportation system, a railway could contain potential risks that may result in a high death rate and property losses. Accordingly, Railroad Safety Technology R&D Corps. is adopting the plan of the construction of Railway Safety Test Facilities as a part of the Railway Total Safety Project to enhance the railway safety, and carrying out researches on effective project management methods with Systems Engineering techniques. Recently, various systems engineering tools such as CORE or Cradle are applied to manage the system requirements and the project management process in the part of the aerospace engineering and automobile engineering so on. The railway industry also makes an effort to develop an efficient management skills using systems engineering tools as the railway system is multi-disciplinary. Therefore, we propose the more effectual management method of constructing the Railway Safety Test Facilities applying the systems engineering tool to the research.

  • PDF