• Title/Summary/Keyword: Automobile Seat

Search Result 89, Processing Time 0.02 seconds

An Investigation of Relational Characteristics among the Design Elements of Automobile Seat Packaging with a Triangular Method (삼각기법을 이용한 자동차 운전환경 설계요소간 관계 모델링)

  • Jung, Eui-S.;Lee, Jugn-K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.2
    • /
    • pp.173-183
    • /
    • 1999
  • The three design elements of automobile occupant packaging such as pedals, steering wheel, and seat are the most important factors to design an ergonomically sound layout for improving driving comfort and performance. The aim of the study is to find out coherent characteristics of the relationships among three design elements. For this purpose, Triangular Method is suggested. We extracted properties for determining the shape, size, and location of the triangle that is composed of Accelerated Heel Point, Steering Wheel Point, and Hip Point. An experiment was conducted at a seating buck in which the design elements are freely adjustable by the subject to investigate driver's preferred arrangement of three elements. Statistical analyses revealed that there was a subtle change in the shape of triangle according to different percentiles and that the significant difference was observed only for the size of the triangle. The results will be effectively applied to design a comfortable seat packaging layout.

  • PDF

The Study on a Biomechanical Model for Automotive Seat Design (자동차 SEAT DESIGN을 위한 BIOMECHANICAL MODEL 연구)

  • 신학수;최출헌
    • Proceedings of the ESK Conference
    • /
    • 1998.04a
    • /
    • pp.149-154
    • /
    • 1998
  • The design of seat is maintaining to final stable posture. The final stable posture is the seated posture in which the force of the pad and spring supporting the body is balanced with the body weight and the bodydoes not sink anyfurther intothe seat. With poorly designed seated seats, your behind maygradually move forward, or localized pressure may result in congestion of the blood or numbness, making you want to move. Therefore, the final stable posture is not maintained. A number of ideas were used in this study will eliminate this problem. In automobile seat design, primary attention has forcused on providing the occupant with a comfortable seat that has sufficient padding and adjuxtments toaccomodate different sizes and postures of people. First of all, whether the process is design-oriented or technology-oriented, the design concept must be human-oriented. The fatigue-alleviating seats which were the primary purpose of this research were studied with a human-oriented approach.

  • PDF

The Study on Process and Optimal Design for Development of Next Generation Integrated Restraint Seat for Automobile (The Design of Lightweight Seat Frame made by the Hydroforming Process) (자동차용 차세대 통합형시트 개발을 위한 공정 및 최적화설계 기법 연구 (하이드로포밍 공법을 이용한 경량 시트프레임 설계))

  • 표창률;전병희;조명래;전한수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.80-85
    • /
    • 2000
  • The hydroforming process is rapidly gaining popularity in the sheet metal forming industry. In this study, hydroforming process is applied to the seat back frame. The load-deformation characteristics of seat frame are simulated according to the test requirements by FMVSS. Structural analyses were performed with an analysis package program named I-DEAS for the conventional and the hydroforming seat back frame. The seat back frame made by hydroforming is not only about 23 percent lightweight, but also about 20 percent high strength compared with conventional that.

  • PDF

Strength Analysis of Luggage Intrusion into Recreational Vehicle Seat (RV 차량 시트의 적재물 침입 강도해석)

  • Bae Jinwoo;Kang Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.160-166
    • /
    • 2005
  • In recent, recreational vehicles, which efficiently provide wide inner space for various utilities, are highly preferred in automobile market. Though those vehicles enable to load much luggage in space behind the last seat, in case of frontal impact with high velocity the luggage strongly collides into the seat back and the passengers in. the last seat could be severely injured. Therefore, high strength against luggage intrusion is required for the last seat, and it is regulated by law of ECE R17. In this study, for a recreational vehicle under developing, an analysis technique for simulating seat crash in accordance with luggage intrusion test of ECE R17 was investigated. The results exhibited good correlation with the test ones.

Development of Integrated System for Virtual Design and Performance Testing of Automobile Seat (자동차 시트 가상설계와 성능평가를 위한 통합시스템 개발)

  • Im, O-Gang;Yu, Wan-Seok;Jeong, Yung-Ho;Kim, Gwang-Seok;Lee, Jin-Sik;No, Hyo-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1779-1786
    • /
    • 2000
  • Most of traditional design processes of mechanical parts are regarded as sequential and discrete, since different kinds of softwas should be introduced. In this paper, we develop an integrated fram ework for virtual design and performance testing of an automobile seat. The system is composed of four modules, i.e. CAD, static analysis, dynamic analysis, and draft drawing module. In the CAD module, PRO/ENGINEER 3D seat model is created using parameters to be modified with the result of static and dynamic analysis. In the static analysis, headrest tere used in each design stage make it difficult to feedback their results to upstream process. These discrete processes may result in time loss and cost rise. In recent years, life cycle of product is reduced. To have competence with others, new concept design processt is simulated using ANSYS. In the dynamic analysis module, FMVSS201 test is simulated using DADS. Overall data flow is controlled by Motif. The advantage of the system is that even a novice can perform and review the whole design process, without a good hand at professional design/analysis S/W in each stage. The system also provides a virtual design space, where engineers in different development stage can access common data of design models. The concept could be applied to other fields and it could reduce time and money required in design process.

Development of Upcycling Fashion Design Using Automotive Waste (자동차 폐기물을 활용한 업사이클링 패션 디자인 개발)

  • GAO LI;Kim, Chahyun
    • Journal of Fashion Business
    • /
    • v.28 no.3
    • /
    • pp.34-47
    • /
    • 2024
  • This study aimed to enhance public awareness of the growing issue of automobile waste and promote environmental protection by developing visually appealing and innovative clothing designs. By leveraging successful examples of upcycled fashion design and products that could recycle automobile waste, this study proposed four garment designs utilizing various materials such as seat belts, leather seat fabrics, and airbags from automobile waste. Ultimately, two of these garments were produced as physical prototypes. Findings of this study are summarized as follows. First, the development of upcycled fashion products utilizing automotive waste opened new possibilities for sustainable fashion design. This approach demonstrates potential to meet demands of modem consumers who prioritize environmental values and social responsibility. Second, the study established an important foundation for understanding market acceptance and consumer perception of upcycled fashion products using automotive waste. As consumer awareness of environmental protection grows and demand for sustainable products increases, these upcycled products are likely to gain significant traction in the fashion industry.

Process Design of Seat Rail in Automobile by the Advanced High Strength Steel of DP780 (DP780 초고장력 강판을 이용한 자동차용 시트레일의 성형공정 설계)

  • Ko, D.C.;An, J.H.;Jang, M.J.;Bae, J.H.;Kim, C.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2008
  • The control of springback is very important in sheet metal forming since springback affects the dimensional inaccuracy of product. The object of this study is to design the manufacturing process for the improvement of the performance of seat rail by DP780. The influence of process variables such as bend angle and pad force on the springback has been firstly investigated through the comparison between the results of FE-analysis and trial out for initial design based on designer's experience. The process variables of the initial design have been modified in order to improve the dimensional accuracy of seat rail from the prediction of springback by FE-analysis. It was shown from experiment that the improved design satisfied the required specifications such as the dimensional accuracy and the strength of seat rail.

A Study on Occupant Neck Injury in Rear End Collisions (후방추돌시 탑승자 목 상해 감소를 위한 연구)

  • 이재완;윤경한;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.130-138
    • /
    • 2000
  • The position of the automobile seat back is very important for the neck injury in the rear-end collisions. The effects of the position have been evaluated experimentally. A sled simulator is utilized with a velocity of 33 km/h. The position is varied by the angle of seat back from 25 to 65 degrees. All the configurations of the seat are fixed except the angle. The neck injuries are calculated by the equations accepted in the industries. Also, the sled tests with other velocities are carried out for the comparison study. Using the results of the test, the effects of seat back strength are discussed to minimize the occupant neck injury in rear end collisions.

  • PDF

Evaluation of Seat Comfort and Pressure Distribution According to the Ergonomic Design of Automobile Seats (자동차 시트의 인간공학적 디자인에 따른 착좌 안락감 및 압력분포 평가)

  • Halim Chung;Jun Won Choi;Seung Wan Yang;Chun Kyu Park;Do Yong Kim;Chang Hyun Song;Jong Bae Kim;Han Sung Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.157-165
    • /
    • 2023
  • The purpose of this study was to evaluate the importance of developing slim seats with ergonomic design to improve seat comfort and expand the interior space. Two seats were used for the experiment: a sample seat designed based on hip shape and spinal alignment and a normal seat with a flat design without curves. Subjects sat in both the sample seat and a normal seat applied to the vehicle simulator and the experiment was conducted. The next part of the experiment was conducted in two different postures: a driving posture and a relaxed posture. The subjects filled out a comfort questionnaire immediately after sitting and after 30 minutes. The results showed that the comfort in the sample seat was found to be more comfortable than the normal seat. However, no significant difference was noted for the relaxation posture. Pressure distribution was also recorded immediately after sitting and after 30 minutes. In the case of pressure distribution, it was confirmed that the pressure in the sample seat was more evenly distributed in both the driving and relaxed postures than in the normal seat. The results showed that the ergonomically designed sample seat greatly improved seating comfort and pressure distribution compared to the normal seat, which is a general vehicle seat design.

A Study on T-Joint Welding by High Power Fiber Laser of SAPH Steel Plate for Automobile (자동차용 강판 SAPH의 고출력 파이버 레이저에 의한 T형상 용접특성에 관한 연구)

  • Oh, Yong-Seok;Yoo, Young-Tae;Shin, Ho-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.35-44
    • /
    • 2009
  • The purpose of this paper is to describe experimental results about the T-joint welding of the high power continuous wave (CW) fiber laser for SAPH steel plate for seat frame of car. The seat rail is a part of seat frame of cars. The assembling method is mostly fix up using a bolt and nut. But this assembling method has many demerits in productivity such as increasing work process and material cost. This paper presents an experimental study about Laser T-Joint weldability of seat rail. Laser welding has many advantages in lightness and saving material costs of seat frame. The laser beam was moved along the work pieces by six axis robot with process optical fiber. The laser beam is focused with a welding head within incident angle $15{\sim}45^{\circ}$ for the purpose of the T-joint welding through two side full penetration. The range of the root gap size is less than ${\leq}0.4mm$. Optical microscopy SEM were performed to observe the micro structures and determine the structures of welded zone.