• Title/Summary/Keyword: Automation of the Manufacturing Process

Search Result 416, Processing Time 0.031 seconds

A Study on the Detection of Chatter Vibration using Cutting Force Measurement (절삭력을 이용한 채터의 감지에 관한 연구)

  • 윤재웅
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.150-159
    • /
    • 2000
  • In-process diagnosis of the cutting state is essential for the automation of manufacturing systems. Especially when the cutting process becomes unstable it induces self-exited vibrations a frequent case of poor tool life rough surface finish damage to the workpiece and the machine tool itself and excessive down time. To ensure that the cutting process main-tains stable it is highly desirable to have the capability of real-time. To ensure that the cutting process main-tains stable it is highly desirable to have the capability of real-time monitoring and controlling chatter. This paper describes the detection method of chatter vibration using cutting force in turning process. In order to detect a chatter vibra-tion the dynamic fluctuation of radial force is analyzed since this components is sensitive to the chatter. The envelope sig-nal of radial force has been calculated by the use of FIR Hilbert transformer and it was useful to classify the chatter signal from the dynamically unstable circumstances. It was found that the mode and the mode width were closely correlated with the chatter amplitude was well. Finally back propagation(BP) neural network have been applied to the pattern recognition for the classification of chatter signal in various cutting conditions. The validity of this systed was confirmed by the experiments under the various cutting conditions.

  • PDF

Sensitivity Analysis to Relationship Between Process Parameter and Top-bead with in an Automatic $CO_2$ Welding ($CO_2$ 자동용접의 공정변수와 표면 비드폭의 상관관계에 관한 민감도 분석)

  • Seo J.H.;Kim I.S.;Kim I.J.;Son J.S.;Kim H.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1845-1848
    • /
    • 2005
  • The automatic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters.

  • PDF

Development of software for computing forming information using a component based approach

  • Ko, Kwang-Hee;Park, Jung-Seo;Kim, Jung;Kim, Young-Bum;Shin, Jong-Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.78-88
    • /
    • 2009
  • In shipbuilding industry, the manufacturing technology has advanced at an unprecedented pace for the last decade. As a result, many automatic systems for cutting, welding, etc. have been developed and employed in the manufacturing process and accordingly the productivity has been increased drastically. Despite such improvement in the manufacturing technology, however, development of an automatic system for fabricating a curved hull plate remains at the beginning stage since hardware and software for the automation of the curved hull fabrication process should be developed differently depending on the dimensions of plates, forming methods and manufacturing processes of each shipyard. To deal with this problem, it is necessary to create a "plug-in" framework, which can adopt various kinds of hardware and software to construct a full automatic fabrication system. In this paper, a framework for automatic fabrication of curved hull plates is proposed, which consists of four components and related software. In particular the software module for computing fabrication information is developed by using the ooCBD development methodology, which can interface with other hardware and software with minimum effort. Examples of the proposed framework applied to medium and large shipyards are presented.

Real-time Synchronization Between Two Industrial Dual-arm Robots (두 개의 산업용 양팔로봇간의 실시간 동기화 방법)

  • Choi, Taeyong;Kyung, Jinho;Do, Hyunmin;Park, Chanhun;Park, Dongil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.1027-1033
    • /
    • 2016
  • There is an increasing need for manufacturing systems to produce batches in small quantities. Such manufacturing systems are significantly difficult to develop with conventional automation equipment. Recently, several research groups have applied industrial dual-arm robots to cell production lines. A synchronization method for robots is necessary for the cell production process when robots work in a shared workspace. Conventional automation factories do not need this method because the main control system operates all of the machines or robots. However, our intended application for the developed robot is in small manufacturing environments that cannot install an expensive main control system. We propose an inexpensive and high-performance method with a simple digital in/out channel using a real-time communication protocol. The developed method was validated in a pilot production line for cellular phone packing.

A Study on Development of Automatic Welding System by Using Multiple Welding Troches in SAW (다전극 SAW 공법을 이용한 무인 용접자동화 장치 개발에 관한 연구)

  • 정문영;김정섭;문형순;권혁준
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.43-46
    • /
    • 1999
  • It has been suggested that the motivation for automation of welding processes ncludes the replacement and extension of the functions of human operators. Among these types of the welding automation, SAW(Submerged Arc Welding) was prevalently used, because it is highly suited to a wide range of application, especially for the high speed welding. A Significant portion of the total manufacturing time for a pipe fabrication process is spent on the welding following primary machining and fit-up processes. To achieve the reliable weld bead appearance, the automatic seam tracking and adaptive control to fill the groove are urgently needed. This paper proposed the mechanical functions of multi-torches welding system, flux supply and recovery system in conjunction with the complex air pulsing method and various types of methodologies. It was shown that the multi-torches welding system revealed the high welding qualities for the circular and rectangular pipes. In conclusion, the multi-torches welding system developed will contribute the advanced welding technology, welding automation and increment of the market in these areas.

  • PDF

Hybrid 3D Printing and Casting Manufacturing Process for Fabrication of Smart Soft Composite Actuators (지능형 연성 복합재 구동기 제작을 위한 3D 프린팅-캐스팅 복합 공정)

  • Kim, Min-Soo;Song, Sung-Hyuk;Kim, Hyung-Il;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.77-83
    • /
    • 2016
  • Intricate deflection requires many conventional actuators (motors, pistons etc.), which can be financially and spatially wasteful. Novel smart soft composite (SSC) actuators have been suggested, but fabrication complexity restricts their widespread use as general-purpose actuators. In this study, a hybrid manufacturing process comprising 3-D printing and casting was developed for automated fabrication of SSC actuators with $200{\mu}m$ precision, using a 3-D printer (3DISON, ROKIT), a simple polymer mixer, and a compressor controller. A method to improve precision is suggested, and the design compensates for deposition and backlash errors (maximum, $170{\mu}m$). A suitable flow rate and tool path are suggested for the polymer casting process. The equipment and process costs proposed here are lower than those of existing 3D printers for a multi-material deposition system and the technique has $200{\mu}m$ precision, which is suitable for fabrication of SSC actuators.

Development of Automation Program Module for OLP based Industrial Robot Simulation (OLP 기반 산업용 로봇 시뮬레이션을 위한 자동화 프로그램 모듈 개발)

  • Lee, Soo-Jun;Lee, Se-Han;Park, Jong-Keun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2009
  • Interactive Graphic Robotics Integrated Programming(IGRIP) can handle various types of robot models and can exchange graphic or numerical data easily with other CAD software. In a cutting process of shape-steels, however. IGRIP is inconvenient because the users must generate all the tag points manually. In this study we developed an automation program module in order to generate the tag points automatically in IGRIP This program can read and analyze the macro data containing the information for cutting processes of shape-steels and can generate automatically the parts, the devices, the tag points and the Graphic Simulation Language(GSL) program files useful in IGRIP.

Development of an Expert System for Optimizing Die and Mold Polishing-II (금형면 자동 다듬질 전문가 시스템 개발에 관한 연구-II-통합 연마 파라미터를 사용한 최적 가공 구현 및 전문가 시스템 구축-)

  • 민헌식;이성환;안유민;조남규;한창수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.45-51
    • /
    • 2002
  • To reduce the cost and increase reliability of die and mold products, automation of the finishing (polishing) process is essential. A major element of automation is a reliable database and a knowledge base for polishing status. This paper presents a polishing expert system which can determine optimal polishing sequences and conditions by using an empirical formula and an experimental database. The simplex method was used for the curve fittings of the experimental results. Also a graphical user interface, which visualizes the optimized results, was developed.

Success Factors of Factory Automation : A Case Study for Small and Medium sized Companies (생산자동화의 성공요인에 관한 연구: 중소기업에 대한 사례분석)

  • 이정원
    • Journal of Technology Innovation
    • /
    • v.7 no.2
    • /
    • pp.101-118
    • /
    • 1999
  • Factory automation(FA) is a part of technological innovation to make production process more efficient and it also facilitates technological innovation by accumulating the internalization ability of newly imported technology Introduction of FA, however, does not guarantee the increase of production efficiency and high product quality, moreover, the competitiveness of firm. The purpose of this paper is to analyze the relationship between firm's behavioral characteristics during implementation process of FA and organizational performance, and to find out success factors of FA. Results of the case studies for 4 SME's show that financial stability and the fitness between corporate strategy and the purpose of FA are the necessary conditions for successful implementation of FA. But the organizational restructuring for new manufacturing system, openness of all communication channels, and common mind of employees are also needed to achieve the high degree of performance from FA, especially the benefits of qualitative or organizational level.

  • PDF

A Study on Property of Thermoset Composite in FPS Process (FPS 공정에 의한 열경화성 복합재 유효성 검증 연구)

  • Kim J-H;Um M-K;Byun J-H;Lee S-K;Jeon Y-J
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.241-245
    • /
    • 2004
  • Among the various manufacturing processes of composites, the tape lay-up process of thermoset prepreg has many advantages compared to autoclave or hot press forming. It has a high potential to process automation and continuous fabrication .. Fiber placement developed as a logical combination of filament winding and automated tape placement to overcome some of the limitations of each manufacturing method. Fiber placement uses a compaction device to apply direct contact between the incoming materials in the fiber placement head and Heat is added to the materials at the nip point of the compaction roller. This paper will discuss property of thermoset composite as compaction and heat effect in Automated fiber placement

  • PDF