• Title/Summary/Keyword: Automation Robot

검색결과 628건 처리시간 0.026초

이족 보행 로봇의 초기 자세에 따른 걸음새 해석에 관한 연구 (A Study on the Gait Analysis for Initial Posture of a Biped Robot)

  • 노경곤;정진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.301-303
    • /
    • 2001
  • This paper deals with the biped robot gait on changing the initial postures. Gait of a biped robot depends on the constraints of mechanical kinematics and initial posture. Also biped robot's dynamic walking stability is investigated by ZMP(Zero Moment Point). The path trajectory. with the knee joint bent like a human, is generated and applied with the above considerations. To decrease trajectory tracking error, in this paper, a new initial posture similar to bird's case is proposed and realized with the real robot.

  • PDF

머시닝센터 장착형 로봇을 이용한 곡면금형의 연마 자동화에 관한 연구 (A Study on the Automation of Polishing for Curved Surface Die Using Robot Attached to Machining Center)

  • 조영길;이민철;이만형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.743-747
    • /
    • 1997
  • Polishing work for a curved surface die demands simple and repetitive operations and requires much time while it also demands high precision. Therefore it is operated by skilled worker in handiwork. Howener workers avoid polishing work gradually because of the poor environments such as dust and noise. In order to reduce the polishing time and to alleviate the problem of shortage of skilled workers, researches for automation of polishing have been pursued in the developed countries. In the research, a polishing robot with 2 degrees of freedom motion attached to machining center with 3 degrees of freedom and pneumatic system forms an automatic polishing system which keeps the polishing tool vertically on the surface of die and maintains constant pneumatic pressure. A synchronization between machining center and polishing robot is accomplished by using M code of machining center. A rulled surface and shadow mask are polished by the developed polishing robot.

  • PDF

중하중을 받는 이동로붓의 슬라이딩모드 제어 (Sliding Mode Control for a High-Load Wheeled Mobile Robot)

  • 홍대희;정재훈
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.145-153
    • /
    • 2000
  • This paper discusses the dynamic modeling and robust control development for a differentially steered mobile robot subject to wheel slip according to high load. Consideration of wheel slip is crucial for high load applications such as construction automation tasks because wheel slip acts as a severe disturbance to the system. It is shown that the uncertainty terms due to the wheel slip satisfy the matching condition for the sliding mode control design. From the full dynamic model of the mobile robot, a reduced ideal model is extracted to facilitate the control design. The sliding mode control method ensures the dynamic tracking performance for such a mobile robot. Numerical simulation shows the promise of the developed algorithm.

  • PDF

Motion Planning of an Autonomous Mobile Robot in Flexible Manufacturing Systems

  • Kim, Yoo-Seok-;Lee, Jang-Gyu-
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1254-1257
    • /
    • 1993
  • Presented in this paper is a newly developed motion planning method of an autonomous mobile robot(MAR) which can be applied to flexible manufacturing systems(FMS). The mobile robot is designed for transporting tools and workpieces between a set-up station and machines according to production schedules of the whole FMS. The proposed method is implemented based on an earlier developed real-time obstacle avoidance method which employs Kohonen network for pattern classification of sonar readings and fuzzy logic for local path planning. Particulary, a novel obstacle avoidance method for moving objects using a collision index, collision possibility measure, is described. Our method has been tested on the SNU mobile robot. The experimental results show that the robot successfully navigates to its target while avoiding moving objects.

  • PDF

고층건물 외벽 유지보수 건설로봇 시스템 개발을 위한 청소공정 작업절차 분석 (Facade Cleaning Process Analysis For Construction Robot System Design of High-rise Building External wall Maintenance)

  • 김대건;김복규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 2부
    • /
    • pp.77-79
    • /
    • 2011
  • As residents and building owners demand maintenance that is required to achieve sustainable building performance, efficient building management methods are required. Even though the demand for maintenance systems is increasing, current maintenance work for high-rise buildings mostly uses conventional ropes and gondolas that pose a high risk of accidents and exhibit poor performance and efficiency. Thus, there is an urgent need to develop an automation robot system that can reduce accidents and improve the maintenance efficiency of the conventional high-rise building façade maintenance system. As a preceding work for the development of an automation robot system, this study classified and analyzed the work processes of actual construction sites and proposed basic techniques for the work mechanisms of the robot system by investigating the motions of cleaning workers.

  • PDF

건축 내부 바닥 미장 자동화 로봇 플랫폼 개발 (Development of an Automated Indoor Floor Finish Robot Platform)

  • 문지윤;이동주
    • 한국전자통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.853-858
    • /
    • 2023
  • 건설 산업에 다양한 종류의 로봇들이 활용되고 있다. 특히, 일관된 작업의 품질을 보장할 수 있는 미장 자동화에 적용할 수 있는 로봇에 관한 관심이 높다. 이에 본 논문에서는 wheel을 기반으로 미장 자동화를 위한 로봇 플랫폼을 제안한다. 실험을 통해 우리는 설계한 로봇을 이용하여 wheel의 공기압에 따른 표면 압력을 측정하였다. 그 결과, 설계한 로봇은 무른 모르타르 위에서 휠당 균일하고 낮은 압력으로 미장 작업이 가능할 것임을 확인할 수 있었다.

다양한 선 두께들을 인식하고 그리는 로봇 팔 (Robot Arm Recognizing and Drawing Various Line Thicknesses)

  • 조원서;김동한;류근호
    • 제어로봇시스템학회논문지
    • /
    • 제19권12호
    • /
    • pp.1105-1110
    • /
    • 2013
  • In this paper, a robot arm capable of recognizing and drawing various line thicknesses is developed. Conventional line drawing robots are not capable of adjusting the thickness of lines. However, to draw faster and to enrich the expression of line drawing robots, it is necessary to adjust line thickness using a brush pen. Simple images are acquired and various line thicknesses are recognized by image processing. Trajectories of lines are generated with distance sorting using thinning and corner point detections for each label. Information on line thickness and trajectory is sent to the controller of a robot arm taking into consideration 2D inverse kinematics. Through this process, the robot arm can draw various lines thicknesses along 2D trajectories with 3 motors. Robot arm for detailed drawing will be studied in the future.

기계가공작업을 위한 강성이 큰 2단 평행구조 로보트 암 설계 (Design of a High Stiffness Machining Robot Arm with Double Parallel Mechanism)

  • 이민기
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.22-37
    • /
    • 1995
  • Industrial robot has played a central role in the production automation such as welding, assembling, and painting. There has been, however, little effort to the application of robots in machining work(grinding, cutting, milling, etc.) which is typical 3D work. The machining automation requires a high stiffness robot arm to reduce deformation and vibration. Conventional articulated robots have serially connecting links from the base to the gripper. So, they have very weak structure for he machining work. Stewart Platform is a typical parallel robotic mechanism with a very high stiffness but it has a small work space and a large installation space. This research proposes a new machining robot arm with a double parallel mechanism. It is composed of two platforms and a central axis. The central axis will connect the motions between the first and the second platforms. Therefore, the robot has a large range of work space as well as a high stiffness. This paper will introduce the machining work using the robot and design the proposed robot arm.

Development of Automatic Mark Welding Robot

  • Ryu, Sin-Wook;Kim, Ho-Gu;Lee, Jae-Chang;Kim, Se-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.643-648
    • /
    • 2005
  • Generally, ships have marks of various shapes on outside of the hull. Among them, so called "Draft Mark" indicates the distance from the bottom of the keel to the waterline. Draft marks are used to determine the displacement and other properties of the ship for stability and control purposes. These marks are made up of welding bead or sticking the steel plate on outside of the hull. To improve the confidence level of the ship owner, quality and accuracy of the draft mark is very important. So the automatic mark welding robot is used to enable a high quality and accurate manufacturing line. To improve the system portability, the system is divided into two distinct parts, namely mechanical part and control part. Mechanical part is robust, a lightweight, and easy to dismantle. The control part consists of an in-house developed controller, which is based on embedded Linux. Also, the control part consists of power line communication module to ensure the applicability of the controller in manufacturing line. In this paper, the methodologies of control and configuration of the robot are discussed.

  • PDF