• Title/Summary/Keyword: Automatic train protection

Search Result 45, Processing Time 0.032 seconds

A Study of Successful Factor on PSD Application Technique for Manual Operation Mode(ATS) (수동운전(ATS)구간에서 PSD 적용 기술의 성공적 요인 분석연구)

  • Son, Yeong-Jin;Park, Keun-Soo;Min, Kyung-Yun
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.57-66
    • /
    • 2007
  • 1974. 8. 15 SeoulMetro, beginning with the first electric railway established at six cities, so it is managing mass transportation of traffic. Especially, in case of seoul, It is managing that from one to eight lines, 286.9km, 265 stations have installed and now it is carrying about 5.5million of passengers everyday, and 2,000million passengers a year. So accident is increasing from the station every year. For this measure, SeoulMetro prepares safety fence for passengers crash but, as suicides or people who watch the accident took place, for at the bottom of passengers crash protection, PSD installing is needed. Even though, PSD is managing ATO section but, in controlling SeoulMetro, one to four lines sections are (ATS, ATC)section. Between as ATS, ATC section, ATO section, subway gate and PSD must have opened and crossed always at the time. And the interlock control corrosion protection gate, managing skills with installation, method, using in history, apply to 10rail cars one train sets, and maximum applying 2224% sections of passengers congested that consideration is to be needed. So 2004, SeoulMetro improved technology and basie design of PSD at ATS section. Based on this, from 2005.4 to 2006.6, using subway 2lines per 12stations set the model installation(full type 11stations, half type 1station) After installing in case of success, it is going about to suggest that effective analysis and hereafter subject.

Development of CBTC Car-borne Software with Model-Based Design and Its Applications (모델기반 설계를 통한 CBTC 차상장치 소프트웨어 개발 및 적용)

  • Quan, Zhong-Hua;Choi, Sun-Ah;Choi, Dong-Hyuk;Cho, Chan-Ho;Park, Gie-Soo;Ryou, Myung-Seon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.910-917
    • /
    • 2011
  • CBTC(Communication Based Train Control) car-borne equipment, a part of the communication based train control system, mainly consists of automatic train protection(ATP) functions, automatic train operation(ATO) functions as well as the interface functions with other equipment including CBTC wayside equipment and train control management system etc. The CBTC car-borne software implementing ATP/ATO functions is a real-time embedded software requiring a high level of safety and reliability. To satisfy the requirements of the CBTC car-borne software, the model-based design techniques are applied with SCADE(Safety-Critical Application Development Environment) to the development of the CBTC car-borne software. In this paper, we illustrate the process modeling the car-borne ATP/ATO functions satisfying system requirement specification with system requirement management, modeling and document generation tools etc. supported by SCADE. In addition, the developed models corresponding to the ATP/ATO functions are applied to the train with CBTC car-borne equipment through its corresponding EN-50128 standards-compliant C code generated by the code generator. It is shown from the test result that the ATP/ATO models developed by SCADE work well while the trains are running in driverless operation mode.

  • PDF

The study on the signal controls for the mixed train operation on the fixed block (고정폐색구간에서 복합열차운행에 대한 신호제어기술 고찰)

  • 이영훈;김종기;류상환;이영형
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.350-357
    • /
    • 2001
  • 본 논문은 고정폐색구간에서 차량운전 특성과 속도패턴이 다양한 다종의 열차들이 동일선로에서 복합되어 고밀도 운행을 위한 방법으로, 신호현시에 대한 제반정보를 차상으로 전송 받아 기관실 신호표시반에 신호를 현시 하는 차상신호방식(Cab Signalling System)중에서, 선행열차의 위치, 선로조건 등 지상의 상태정보를 후속열차가 수신하여 열차 자신의 제동특성 등 차량정보와 비교 분석하여 제동거리를 계산하는 distance to go 방식으로 열차운전속도를 제어하는 ATP (Automatic Train Protection) 시스템을 제안하였다. 폐색구간별 고정된 신호속도단계가 부여되는 ATC(Automatic Train Control) 시스템에서는 운행패턴이 같은 단일차종의 열차만 운행하는 구간에서는 일정속도에 의한 폐색구간 분할로 구간내 distance to go 신호체계가 이루어지지만, 차종과 속도패턴이 서로 상이한 복합열차들의 운행구간에서는 안전거리 확보를 위하여 저속열차의 제동거리를 기준으로 폐색구간 분할 및 속도결정이 이루어지므로 ATP 방식보다 운행효율이 다소 떨어짐을 알 수 있었다. 이를 차량특성과 속도패턴이 다른 3개의 열차를 모델로 하여 열차별 감속도에 의한 제동특성을 ATC와 ATP 신호제어체계에 접목시켜 시뮬레이션을 하였다.

  • PDF

Investigation of Radio Communications-based Train Control System with Interoperability (무선통신기반 열차제어시스템 상호운영성 연구)

  • Choi, June-Young;Park, Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • This paper analyzes the hazard related to train control, the functional requirements for atrain control system(TCS) and the automatic train protection(ATP) functional allocation that ensures the interoperability of a radio communications-based TCS. In addition, the interoperability can be obtained using wireless communications technology standards and standardized functional allocations of TCS performed on the wayside and onboard. Using this information, an integrated operating system for a rail network can be constructed. The functional allocations of TCS that support interoperability, require hazard analysis of TCS and definition of the system requirements. The hazard factors for a TCS are confirmed through setting the train safety space control and train speed limit excess. Furthermore, this paper determines the impact of the hazard factors on the TCS and, defines the functional requirements for the TCS subsystems and the ATP wayside and onboard functional allocations.

A review of ATP Onboard System's Test procedure (열차방호장치(ATP) 차상설비 시험절차에 대한 고찰)

  • Chang, Seok-Gahk;Kim, Jin-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1163-1168
    • /
    • 2008
  • Automatic Train Protection(ATP) System is developed by ETCS(European Train Control System) CONSORTIUM for unify Europe railway system. ATP system is composed of Eurobalise and EuroATC. Nowadays, Korea construct ATP system in conventional line and new electrical locomotives also install ATP system. It is important to verify quality which form checklist during Factory Acceptance Test at beyond the seas. In this paper, review the process, test item, norm and checklist for the Balise Transmission Module, Compact Antenna Unit, Vehicle Control Unit and Communication Controller at the Plymouth Bombardier and Vasteras enics factory.

  • PDF

The Study on Train Separation Control Technology using Balise for Conventional Line Speed Up (기존선 속도 향상을 위한 발리스를 이용하는 열차간격제어 기술에 대한 연구)

  • Baek, Jong-Hyen;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.256-263
    • /
    • 2009
  • KORAIL carries out an improvement project of railway signaling system for the conventional line from the existing method which permits a train to move within limited speed the ground signal of ATS(Automatic Train Stop) system. The proposed system makes possible that a train can be driven using a speed profile created by onboard signaling system(ATP) with the movement authority from ground balise. A driving test over 100,000km is being executed by developing a tilting train for the speed elevation on the conventional line. And, the introduction of the tilting train by ATP system to the Jung-ang line is expected. However, a speed elevation on a curved line section has a restriction. Therefore, research on safety braking model and train separation control technology for the localization of ATP system is required preferentially. In this paper, we presented a safety braking model of ATP system and a train separation control method that use ground balise as variable information provider, and executed a performance simulation.

A Study on the Hazard Identification and Risk Mitigation for ATSRX Using Hazard and Operability Study (HAZOP Study를 사용한 ATSRX의 위험원도출 및 리스크 완화에 관한 연구)

  • LEE Jun-Ho;LEE Kang-Mi;KIM Yong-Kyu;SHIN Ducko
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.533-538
    • /
    • 2005
  • In this paper we identity the hazard using HAZOP study for ATSRX which is a subsystem of the ATP system, and we study a safety management method for the mitigation of the risk to the acceptable level. ATSRX is a device that make a train which has a ATP system operate in ATS line. For this ATSRX send a induction signal with ATS system to vehicle controller. Thus ATSRX can be said a safety equipment that makes a train operate safely. In order to identify the hazard for the internal faults in ATSRX system, we employ HAZOP study method which is recommended as hazard identification in IEC 62278, RAMS requirements in railway signal, and also it provide the detail activity in IEC 61882. Thus, in this paper we perform HAZOP study based on ATSRX related standards and using the assessment of the identified hazard we study a method to guarantee the system safety through the change of the design to mitigate the risk to the acceptable level.

A Study on the Magnetic Intensity from Wayside Transmitter to On-board Transmitter about the Train Speed in ATP system (ATP시스템에서 열차속도에 따른 지상자에서 차상자로의 자계의 세기에 관한 연구)

  • Kim, Min-Seok;Ko, Jun-Seog;Lee, Sang-Hyeok;Kim, Min-Kyu;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1841-1848
    • /
    • 2010
  • Electric railway system consist of rolling stock, track, signal and streetcar line system. ATP(Automatic Train Protection) system in railway signaling system is the important one grasping the position and velocity of a train. The wayside transmitter of ATP system is installed between rails. Recently, the research about increasing train speed has been developed in total departments of the railroad systems. The study on the information transmission between on-board transmitter and wayside transmitter is required for increasing the train speed in the ATP system. When the train speed is increased as to same transmissi on distance, the problem on information transmission occurs because the transmission time is decreased. In case that the transmission distance is extended, the transmission time is decreased with respect to the train speed. Therefore, we have to define the standard magnetic intensity as to the train speed in order to transmit correctly telegram. In this paper, the transmission distance for the telegram is suggested on the basis of the train speed. Also, the standard magnetic intensity from the wayside transmitter to on-board transmitter is proposed by using transmission distance regarding the train speed in the ERTMS/ETCS system by using Matlab program.

  • PDF

A Study on the Analysis of Reliability and Loss Cost by Appling k out of n System in Combined On-board Signaling System (차상통합신호시스템에서 k out of n 시스템 적용에 대한 신뢰도 및 손실비용 분석에 관한 연구)

  • Kim, Min-Kyu;Cha, Gi-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.42-47
    • /
    • 2012
  • There are ATC (Automatic Train Control), ATP (Automatic Train Protection), ATS (Automatic Train Stop) and ATO (Automatic Train Operation) etc. in train control systems. As various train control systems are installed according to sections, on-board signaling systems are installed to apply to the section. Hence, operation flexibility of trains is decreased. In other words, when trains are operated in the section where other train control systems are used, the on-board signaling systems are changed. Recently, a study on the combined on-board signaling system has been researched to solve this problem. The combined on-board signaling system consists of ATC, ATP and ATS device. Because the train control systems are vital, it needs to design the combined on-board signaling system by using k out of n system. In this paper, when k out of n system is applied in the combined on-board signaling system, the reliability and loss cost are analyzed by using failure rate in each device. Hence, the ideal number of systems is presented according to the number of outputs.

A Study on the Safety Braking Distance in ATP System (ATP시스템의 안전제동거리에 대한 연구)

  • Kim, Min-Kyu;Kim, Min-Seok;Kim, Jong-Soo;Yun, Yu-Boem;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.132-139
    • /
    • 2011
  • ATP(Automatic Train Protection) system in railroad signalling system is on-board signalling system which is controlled by train control information such as location and speed of trains. Safety is ensured by transmitting the train control information between on-board and wayside device in the ATP system. When an engineer disregards the speed limit on a tachometer, the train is automatically stopped by the on-board device. Recently, the studies of increasing speed of the train have been developed. Eurobalise in ERTMS/ETCS system is used in case that speed of trains is up to 500[km/h]. A study of safety braking distance is needed by increasing the speed of train in the ATP system. Train data and track data are required to calculate the safety braking distance. The train data includes formations of trains, length of trains, service brake and emergency brake etc. Also, the track data includes slope of track, curve of track, length of track, speed limit etc. In this paper, the speed profile is computed by analyzing the train and track data in the ATP system. It is demonstrated by applying to subway line 2 in Seoulmetro through the on-site test.

  • PDF