• Title/Summary/Keyword: Automatic train control

Search Result 178, Processing Time 0.029 seconds

Gear Train Design of 8-Speed Automatic Transmission for Tractor (트랙터 8단 자동변속기 기어 열 설계)

  • Jung, G.H.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.30-36
    • /
    • 2013
  • Tractor is a farm vehicle that is designed to provide a high tractive effort at low speed. It is used for versatile agricultural tasks such as hauling a trailer, tillage, mowing and construction work. Most older tractors use a manual transmission. However, as the intensity of work increases, tractors equipped with automatic transmission become popular due to the work convenience. In order to give the operator a large degree of control in field work, 24 gears with automatic 8-speed and manual 3-speed are arranged in transmission. This paper deals with the gear train that is designed for 8-speed automatic transmission by the engagement of multi-disk clutches. The gear ratio for each speed as well as power transmission mechanism is analyzed through velocity analysis. In addition, constraints of mesh gear ratio are derived by investigating the power flow path in velocity diagram for the given 8-speed gear ratio.

A Development on the software of Train Control and Monitoring System(TCMS) for Subway Train (전동차용 종합제어장치 소프트웨어 개발)

  • Choi, Byoung-Wook;Park, Jong-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.94-100
    • /
    • 2011
  • TCMS is the most important controller in the subway train for reliable train control and service oriented flexibility. TCMS software charges communications and control of train and maintains control devices so we use QNX for real-time control. This paper introduces overall software development of TCMS using various diagrams. Software implementation details in TC and CC are explained using deployment diagram through train configuration. Driving control process among many processes is focused to present implement details which controls train by driver or automatic train operation and handles commands to control deriving devices in cars. Reliable operation of train and easy maintenance process is achieved through the same hardware in train control computer and car control computer.

Development of Automatic Train Operation System H/W for KOREA Standard EMU (표준전동차용 열차자동운전장치 (ATO) H/W 개발)

  • Lee, Su-Gil;Han, Seong-Ho;Ahn, Tae-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1457-1459
    • /
    • 2000
  • The ATO(Automatic Train Operation System) system is equipment for automatic and driverless operation of electric train with minimum control of operator. In this paper, we made ATO system with national technic and passed type test. We are convinced of reliability and safety of the ATO system on the seoul metro 7 line.

  • PDF

Preprocessing-based speed profile calculation algorithm for radio-based train control (무선통신기반 열차간격제어를 위한 전처리 기반 속도프로파일 계산 알고리즘)

  • Oh, Sehchan;Kim, Kyunghee;Kim, Minsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6274-6281
    • /
    • 2015
  • Radio-based train control system has driving headway shortening effect by real-time train interval control using two-way radio communication between onboard and wayside systems, and reduces facility investment because it does not require any track-circuit. Automatic train protection(ATP), the most significant part of the radio-based train control system, makes sure a safe distance between preceding and following trains, based on real-time train location tracing. In this paper, we propose the overall ATP train interval control algorithm to control the safe interval between trains, and preprocessing-based speed profile calculation algorithm to improve the processing speed of the ATP. The proposed speed profile calculation algorithm calculates the permanent speed limit for track and train in advance and uses as the most restrictive speed profile. If the temporary speed limit is generated for a particular track section, it reflects the temporary speed limit to pre-calculated speed profile and improves calculation performance by updating the speed profile for the corresponding track section. To evaluate the performance of the proposed speed profile calculation algorithm, we analyze the proposed algorithm with O-notation and we can find that it is possible to improve the time complexity than the existing one. To verify the proposed ATP train interval control algorithm, we build the train interval control simulator. The experimental results show the safe train interval control is carried out in a variety of operating conditions.

Development of Metro Train ATO Simulator by improving Train Model Fidelity (모델 충실도 향상을 통한 도시철도 열차자동운전제어 시뮬레이터 개발)

  • Kim, Jungtai
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.363-372
    • /
    • 2018
  • Simulator is used to verifying the function and performance of train control system before verifying with actual train. In this case, it is important that the simulation result should be coincide with the result with actual train. In this paper, the process of the development of automatic train operation (ATO) is described. ATO is in charge of automatic train control such as speed regulation and precision stop control. Identical interfaces from the ATO to the actual train was made in the simulator. Therefore ATO communicates to the simulator in the same way to the actual train. Futhermore, the train dynamic properties was measured by experiments and these were applied to the train model. Hence the response of the train in the simulator to the acceleration command is similar to that of the actual train. The simulation result of precision stop control is compared with the result in the actual train test to show the fidelity of the train model derived in the study and the superiority of this simulator.

Integrated Railway Signaling Systems for Laboratory Testing of Next-generation High-speed Train (한국형 고속전철용 신호시스템의 실험실 시험을 위한 통합 신호시스템)

  • Hwang, Jong-Gyu;Lee, Jong-Woo;Park, Yong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.1
    • /
    • pp.32-39
    • /
    • 2004
  • Railway signaling systems consist of several vital computerized equipment such as CTC(Centralized Traffic Control), EIS(Electronic Interlocking System), ATC(Automatic Train Control) and so on. Currently, the project for development of railway signaling systems for the next-generation high-speed train is progressed according to the G7 project and railway signaling related several companies and research institute are joined this project consortium. The railway signaling systems, being developed in this project, called as a kTCS(Korean Train Control System), is composed of kTCS-CTC, kTCS-IXL, kTCS-ATC and etc. kTCS signaling systems have to be operated at the laboratory testing level as integrated signaling systems by interface between each railway signaling systems before railway field installation and revenue service. To solve this matter, communication protocols between each signaling equipment are designed and message codes for each defined protocols have defined. And also several equipment has developed for the railway integrated signaling systems for laboratory testing. We has plentifully tested and verified the designed protocols and the characteristics of integrated railway signaling systems with our developed each kTCS signaling equipment and communication protocols. In this paper, the integrated kTCS system including communication protocols is presented.

Train Operation Display and Control Techniques for Communication Based Train Control System (무선통신 기반 열차제어시스템에서의 열차운행 표시 및 제어기법)

  • 최규형
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.545-551
    • /
    • 2004
  • CBTC(Communication Based Train Control) System can improve train operation efficiency by realizing moving block system which makes a continuous train interval control in accordance with the position and speed of train. Adopting radio transmission to make a continuous detection of train position and transmit the control data from the ground to a train, CBTC needs dedicated train operation and control algorithm which should be quite different from the conventional track-circuit-based train control system. This paper provides a train operation display and control algorithm for CBTC system in making train interval control, train route control and train supervision. Signalling pattern diagram is devised to analyze the train interval control mechanism of moving block system, and interlocking logic is devised to represent the train route control mechanism of moving block system. For train supervision, train occupation status on railway are displayed by using the segment which virtually divide the whole railway. The proposed method has been successfully applied to the development of CBTC system for the standardized AGT(automatic guided transit) which is under construction now in Korea, and also can be applied to any other CBTC system.

A Study for Running Test Result of Train Automatic Driving Control by ATC/ATO/TWC System (차상 ATC/ATO/TWC 시스템의 열차 자동운전 구현의 현차시험 결과 고찰)

  • 강리택;이종성;김경식;박계서
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.578-585
    • /
    • 2000
  • ATC/ATO/TWC System is the used for the train operation instead of drivels. It is interfaced with train, train equipment, wayside facilities. In this paper described configuration signaling system, construction of signaling system software and structure of system safety. This paper describes the method of performing automatic driving by ATC/ATO/TWC. Also, reported test result for mainline static test and mainline running test.

  • PDF

A Study on the precious stopping control for the automatic electric rail cars (도시철도 전차의 정위치 정차 제어에 관한 연구)

  • Park, Mun-Gyu;Kim, Gyu-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.228-230
    • /
    • 2006
  • While trains perform a complete precision stopping control at stop point, it is essential to keep better commuters comfort in prompt. Because a train's brake force tends to increase a brake effort in a low speed and a low brake effort, a brake force in motor cars must be increased to keep better passenger comfort, to control the special braking qua1ities and to prevent the impact of the automatic coupler rather than trailer's, Rail cars must have a special braking process for the train stopping control. In the train stop mode, the train stopping control is designed to start at 20km/h. It starts by Dynamic brake blending, and then finally stops by only the friction. If these process are not exactly activated, the train may fail a complete precision stop. In this report, it studied the electric and friction brake processing during the precious stopping control. To achieve exact test results, the speed reference has to be reduced the calculated difference. In the precision stopping control. the ways of the keeping brake force in motor car was analyzed and some solutions of controling air pressure was brought up by means of direct test in main line, This study was based on line 5 in Seoul Metropolitan subway.

  • PDF