• Title/Summary/Keyword: Automatic clutch actuator

Search Result 7, Processing Time 0.027 seconds

DEVELOPMENT OF AUTOMATIC CLUTCH ACTUATOR FOR AUTOMATED MANUAL TRANSMISSIONS

  • MOON S. E.;KIM H. S.;HWANG S. H.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.461-466
    • /
    • 2005
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train has gained importance in vehicles. The automatic clutch actuation relieves a driver especially in urban and stop-and-go traffic environments. In this paper, an electro-mechanical actuator for clutch-by-wire (CBW) system is implemented as the first stage for the development of automated manual transmissions. The prototype of the automatic clutch actuator is designed systematically, which is composed of the electric motor, worm and worm wheel, and crank mechanism. A test rig is developed to perform the basic function test for the automatic clutch actuation. The developed prototype is validated by the experimental results performed on the test rig.

Design and Control of Clutch-by-wire System for Automated Manual Transmissions

  • Hwang, Sung-Ho;Kim, Hyun-Soo;Moon, Sang-Eun;Han, Kwan-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.372-376
    • /
    • 2004
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train will gain importance in vehicles. The automatic clutch actuation relieves the drivers especially in urban driving and stop-and-go traffic conditions. In this paper, an electro-mechanical actuator for clutch-by-wire (CBW) system is implemented as the first stage for the development of automated manual transmissions. The prototype of CBW actuator is designed systematically, which is composed of the electric motor, worm & worm wheel and crank mechanism. And the test rig is developed to perform the basic function test for the automatic clutch actuation. The developed prototype is validated by the experimental results on the test rig.

  • PDF

Development of a Pneumatic Semi-Automatic Clutch for Commercial Vehicles based on the CAN Communication (CAN통신 기반의 상용차용 공압구동형 세미오토 클러치 개발)

  • Kim, Seong-Jin;Lee, Dong-Gun;Ahn, Kyeong-Hwan;Lee, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4742-4748
    • /
    • 2014
  • A semi-automatic clutch was developed for drivers of vehicles with manual transmission. The clutch is operated by pressing a switch on the gear stick without stepping on a clutch pedal when the driver wants to shift gears. To automatic control a clutch, driving information is provided by sensors installed under the vehicle. On the other hand, sensors are prone to failure under severe driving conditions and a long time is needed to install or repair these sensors in the vehicle. In this paper, a semi-automatic clutch that received driving information by CAN communication from the ECU was developed and a pneumatic actuator was used to operate the clutch. The semi-automatic clutch by a pneumatic cylinder was operated with a supply air pressure of more than 3bar.

Development of Automated Mechanical Transmission Model to Evaluate TCU Control Logic (TCU 제어로직 평가를 위한 AMT 모델 개발)

  • Oh, Joo-Young;Song, Chang-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.118-126
    • /
    • 2010
  • The automated mechanical transmission(AMT) is composed of electronic control management(ECM) and automatic shift gear(ASG). The AMT has advantages which are high efficiency of manual transmissions(MT) and offer operation convenience similar to automatic transmissions(AT). However, it has defects that are the torque gap during gear shift transients and shift time is long. To reduce such defects, it is necessary practically to evaluate error and characteristics as developing simulation model before the control algorithm is applied. In this paper, models are composed of vehicle model and AMT shift control model. Particularly AMT shift control model consists of main clutch management model (MCM) and shift control management model(SCM). The developed models were verified by comparing the simulated and experimental results under the same operational conditions. It can also be used to evaluate shift algorithm.

A Study on the Design Paramter of a Hydraulic Shift Actuator of an AMT (자동화 수동변속기의 변속 조작용 유압 액츄에이터의 설계 변수에 관한 연구)

  • Song, Chang-Seop;Lee, Sang-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.75-82
    • /
    • 2007
  • The AMT(Automated Manual Transmission) has been developed by utilizing the auto clutch system and the automatic shift mechanism, to automate the clutch operation and shift operation of the existing MT(Manual Transmission). The use of hydraulic actuator for each actuator of the clutch and gear has realized a reduction of fuel consumption and exhaust emission. In this paper, we develop a simulator for the transmission control system of the AMT using AMESim. The developed simulator can be applied to design the hydraulic select actuator system of an AMT.

Analysis on the Clutch Torque of Automated Manual Transmission Vehicle during Dynamometer Test (동력계 시험을 이용한 자동화 수동변속차량의 클러치 토크 분석)

  • Choi, Woo-Seok;Lim, Wonsik;Oh, Ducksoo;Park, Sung-cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.287-293
    • /
    • 2015
  • With the rise in oil prices and ongoing concerns about environment, there is an increased amount of interest in automated manual transmission (AMT) vehicles. Torque control in an AMT vehicle is attained by controlling the displacement of the dry-type clutch's actuator. To provide good ride comfort akin to that of an automatic transmission vehicle, the clutch control is vital to an AMT vehicle. In this study, a method of obtaining the clutch torque from a dynamometer test is devised. This method is able to identify the relationship between the displacement of the clutch actuator and the clutch torque. A simulator for estimating the performance of an AMT vehicle is developed using MATLAB Simulink. The results obtained from both the vehicle and simulation exhibit a similar trend.

Design and Implementation of Clutch-by-wire System for Automated Manual Transmissions (자동화 수동 변속기의 CBW 시스템 개발)

  • Moon, Sang-Eun;Kim, Min-Sung;Yeo, Hoon;Song, Han-Lim;Han, Kwan-Soo;Kim, Hyun-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.119-128
    • /
    • 2004
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train will gain importance in vehicles. The automatic clutch actuation relieves the drivers especially in urban driving and stop-and-go traffic conditions. This paper describes the dynamic modeling of a clutch actuator and clutch spring. The dynamic model of the clutch system is developed using MATLAB/Simulink, and evaluated by experimental data using a test rig. This performance simulator is useful to develop the clutch-by-wire (CBW) system for an automated manual transmission (AMT). The electro-mechanical type CBW system is also implemented as an automatic clutch for AMT. The prototype of CBW system is designed and implemented systematically, which is composed of an electric motor, worm gear and slider-crank mechanism. The test rig is developed to perform the basic function test of the automatic clutch, and the developed prototype is validated by the experimental data on the test rig.